Câu hỏi:

17/09/2022 1,619

Cho tứ giác ABCD nội tiếp đường tròn đường kính AB. Hai đường chéo AC và BD cắt nhau tại E, F là hình chiếu vuông góc của E trên AB.

1. Chứng minh tứ giác ADEF nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD nội tiếp đường tròn đường kính AB. Hai đường chéo AC và BD cắt nhau tại E, F là hình chiếu vuông góc của E trên AB. (ảnh 1)

Ta có ADB^=ACB^=90° (góc nội tiếp chắn nửa đường tròn).

Xét tứ giác ADEFcó: ADE^+AFE^=90°+90°=180°.

Suy ra tứ giác ADEF nội tiếp đường tròn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP