Câu hỏi:

12/07/2024 1,675 Lưu

c) Chứng minh IM là đường trung trực của DF

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Ta có:

+) BE//CK (cmt)CBE^=BCK^ (hai góc so le trong).

+) BCK^=BAK^ (hai góc nội tiếp cùng chắn BK)

+) BAK^=FDC^ (Tứ giác ABDF nội tiếp)

Nên EBC^=FDC^ mà 2 góc này ở vị trí đồng vị suy ra BE//DF

Ta lại có: IM là đường trung bình của ΔABC (I, M lần lượt là trung điểm của AB và BC)

IM // AC

Mà BEAC nên BEIMIMDF (1)

Ta có: ID, IF lần lượt là 2 đường trung tuyến của 2 tam giác ABD và ABF ứng với cạnh huyền ABID=IF (2)

Từ (1) và (2) suy ra IM là đường trung trực của DF

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP