Câu hỏi:
12/07/2024 925Chứng minh rằng: \(S = 2 + {2^2} + {2^3} + {2^4} + {2^5} + {2^6} + {2^7} + {2^8}\) chia hết cho \( - 6\).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Nhóm tổng S thành tổng của các bội số của \( - 6\) bằng cách:
\(S = \left( {2 + {2^2}} \right) + \left( {{2^3} + {2^4}} \right) + \left( {{2^5} + {2^6}} \right) + \left( {{2^7} + {2^8}} \right)\)
\( = 6 + {2^2}.6 + {2^4}.6 + {2^6}.6\)
Mỗi số hạng của tổng S đều chia hết cho \( - 6\), nên S chia hết cho \( - 6\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Câu 5:
Cho \[a,{\rm{ }}b\] là các số nguyên. Chứng minh rằng \[5a{\rm{ }} + {\rm{ }}2b\] chia hết cho 17 khi và chỉ khi \[9a{\rm{ }} + {\rm{ }}7b\] chia hết cho 17.
Câu 6:
Dạng 4: Một số bài tập nâng cao về lũy thừa
31 câu Trắc nghiệm Toán 6 KNTT Bài 1: Tập hợp có đáp án
Đề kiểm tra giữa học kì 2 Toán 6 có đáp án (Mới nhất) (Đề 1)
Đề thi Cuối học kỳ 2 Toán 6 có đáp án (Đề 1)
19 câu Trắc nghiệm Toán 6 KNTT Bài 1: Tập hợp có đáp án (Phần 2)
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1
Dạng 4. Quy tắc dấu ngoặc có đáp án
Bài tập: Tập hợp. Phần tử của tập hợp chọn lọc, có đáp án
về câu hỏi!