Câu hỏi:

11/07/2024 1,232

Cho a, b là các số nguyên. Chứng minh rằng nếu (6a + 11b) chia hết cho 31 thì (a + 7b) cũng chia hết cho 31. Điều ngược lại có đúng không?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(6a + 11b = 6.\left( {a + 7b} \right) - 31b.\)             (*)

Do đó \(31b \vdots 31,\)\(6a + 11b \vdots 31,\) từ (*) suy ra \(6\left( {a + 7b} \right) \vdots 31,\)

Mà 6 và 31 nguyên tố cùng nhau, nên suy ra \(a + 7b \vdots 31.\)

Ngược lại, nếu \(a + 7b \vdots 31\), mà \(31b \vdots 31,\) từ (*) suy ra \(6a + 7b \vdots 31.\)

Vậy điều ngược lại cũng đúng.

Ta có thể phát biểu bài toán lại như sau:

“Cho \[a,{\rm{ }}b\]là các số nguyên. Chứng minh rằng \(6a + 11b\) chia hết cho 31 khi và chỉ khi \(a + 7b\) chia hết cho 31”.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm số nguyên x sao cho: (2x - 5) chia hết cho (x - 1)

Xem đáp án » 13/07/2024 6,261

Câu 2:

Cho số a = 11...11 (gồm 20 chữ số 1). Hỏi số a có chia hết cho 111 không?

Xem đáp án » 12/07/2024 3,119

Câu 3:

Tìm số nguyên x sao cho: (3x + 4) chia hết cho (x - 3)

Xem đáp án » 13/07/2024 2,993

Câu 4:

Tìm số nguyên x sao cho: (x + 2) là ước số của (x2 + 8)

Xem đáp án » 13/07/2024 2,648

Câu 5:

Cho \[a,{\rm{ }}b\] là các số nguyên. Chứng minh rằng \[5a{\rm{ }} + {\rm{ }}2b\] chia hết cho 17 khi và chỉ khi \[9a{\rm{ }} + {\rm{ }}7b\] chia hết cho 17.

Xem đáp án » 11/07/2024 2,121

Câu 6:

Tìm số nguyên x sao cho: (x + 1) là ước số của (x2 + 7)

Xem đáp án » 13/07/2024 1,406

Câu 7:

Tìm số nguyên x sao cho (x - 1) là bội của 15 và (x + 1) là ước số của 1001

Xem đáp án » 11/07/2024 1,320

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL