Câu hỏi:

13/07/2024 412 Lưu

Chứng minh rằng: \(S = 3 + {3^2} + {3^3} + {3^4} + {3^5} + {3^6} + {3^7} + {3^8} + {3^9}\) chia hết cho \(\left( { - 39} \right).\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[S = 3 + {3^2} + {3^3} + {3^4} + {3^5} + {3^6} + {3^7} + {3^8} + {3^9}\]

     = \[(3 + {3^2} + {3^3}) + ({3^4} + {3^5} + {3^6}) + ({3^7} + {3^8} + {3^9})\]

    = 39 + 33.39 + 36.39 = 39.(1 + 33 + 36)\[ \vdots \,\,39\]

Suy ra \[{\rm{S}}\,\, \vdots \,\,39\] nên \[{\rm{S}} \vdots \,\,( - 39)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: 2x  5 = 2(x  1)  3

Do đó để (2x  5)  (x  1) thì 3  (x  1), hay (x  1)  Ư(3) = {−3; −1; 1; 3}.

Ta có bảng giá trị:

x ‒ 1

‒3

‒1

1

3

x

‒2

0

2

4

Vậy các giá trị của x là: ‒2; 0; 2; 4.

Lời giải

Nhận thấy \(3x + 4 = 3\left( {x - 3} \right) + 5.\)

Do \(3\left( {x - 3} \right) \vdots \left( {x - 3} \right),\) nên \(\left( {3x + 4} \right) \vdots \left( {x - 3} \right)\) khi và chỉ khi \(5 \vdots \left( {x - 3} \right).\)

Suy ra \(x - 3 \in {\rm{\"O (5)}}\) hay \(x - 3 \in \left\{ { - 5; - 1;\,\,1;\,\,5} \right\}.\) Vậy \(x \in \left\{ { - 2;\,\,2;\,\,4;\,\,8} \right\}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP