Câu hỏi:

11/07/2024 342

Tìm tất cả các cặp số nguyên x, y sao cho 20x + 10y = 2010.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ điều kiện đề bài suy ra \[2x + y = 201\]

201 là số lẻ và 2x là số chẵn, suy ra y là số lẻ. Khi đó y có dạng:

\[y = 2k + 1\,\,\,\,(k\, \in \,\,\mathbb{Z}) \Rightarrow x = 100 - k\]

Chẳng hạn, bốn cặp số nguyên (x; y) thỏa mãn:

\[(x;y) = (100;\,\,1);\,\,(99;\,\,3);\,\,(101;\, - 1);\,\,(98;\,\,5)\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm số nguyên x sao cho: (2x - 5) chia hết cho (x - 1)

Xem đáp án » 18/03/2025 8,446

Câu 2:

Tìm số nguyên x sao cho: (3x + 4) chia hết cho (x - 3)

Xem đáp án » 13/07/2024 4,224

Câu 3:

Cho số a = 11...11 (gồm 20 chữ số 1). Hỏi số a có chia hết cho 111 không?

Xem đáp án » 12/07/2024 4,070

Câu 4:

Cho \[a,{\rm{ }}b\] là các số nguyên. Chứng minh rằng \[5a{\rm{ }} + {\rm{ }}2b\] chia hết cho 17 khi và chỉ khi \[9a{\rm{ }} + {\rm{ }}7b\] chia hết cho 17.

Xem đáp án » 11/07/2024 3,844

Câu 5:

Tìm số nguyên x sao cho: (x + 2) là ước số của (x2 + 8)

Xem đáp án » 13/07/2024 3,725

Câu 6:

Tìm số nguyên x sao cho (x - 1) là bội của 15 và (x + 1) là ước số của 1001

Xem đáp án » 11/07/2024 2,374

Câu 7:

Tìm số nguyên x sao cho: (x + 1) là ước số của (x2 + 7)

Xem đáp án » 13/07/2024 2,146
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua