Quảng cáo
Trả lời:
Từ điều kiện đề bài suy ra \[2x + y = 201\]
201 là số lẻ và 2x là số chẵn, suy ra y là số lẻ. Khi đó y có dạng:
\[y = 2k + 1\,\,\,\,(k\, \in \,\,\mathbb{Z}) \Rightarrow x = 100 - k\]
Chẳng hạn, bốn cặp số nguyên (x; y) thỏa mãn:
\[(x;y) = (100;\,\,1);\,\,(99;\,\,3);\,\,(101;\, - 1);\,\,(98;\,\,5)\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 361
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Câu 4:
Cho \[a,{\rm{ }}b\] là các số nguyên. Chứng minh rằng \[5a{\rm{ }} + {\rm{ }}2b\] chia hết cho 17 khi và chỉ khi \[9a{\rm{ }} + {\rm{ }}7b\] chia hết cho 17.
Câu 6:
Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 1)
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 2)
Dạng 4: Một số bài tập nâng cao về lũy thừa
Dạng 1: Thực hiện tính, viết dưới dạng lũy thừa
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 11
Đề thi Cuối kì học kỳ 2 Toán 6 có đáp án (Đề 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận