Câu hỏi:

11/07/2024 1,849

Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.

Chứng minh rằng ∆ADM = ∆BDC. Từ đó suy ra AM = BC và AM // BC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh rằng tam giác ADM = tam giác BDC. Từ đó suy ra AM = BC và AM // BC (ảnh 1)

∆ADM và ∆BDC có:

AD = DB (do D là trung điểm của AB)

\[\widehat {A{\rm{D}}M} = \widehat {B{\rm{D}}C}\] (hai góc đối đỉnh)

DM = DC (giả thiết)

Nên ∆ADM = ∆BDC (c.g.c).

Suy ra AM = BC (hai cạnh tương ứng) và \[\widehat {MAD} = \widehat {CBD}\] (hai góc tương ứng).

Mà hai góc này ở vị trí so le trong nên AM // BC (dấu hiệu nhận biết hai đường thẳng song song).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.

Chứng minh AH BC.

Xem đáp án » 11/07/2024 3,513

Câu 2:

Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.

Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB lấy điểm N sao cho BM = CN. Chứng minh rằng ∆ABM = ∆ACN.

Xem đáp án » 11/07/2024 2,182

Câu 3:

Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.

Gọi E là trung điểm của AC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng AN // BC.

Xem đáp án » 11/07/2024 1,614

Câu 4:

Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:

Tam giác AED cân.

Xem đáp án » 11/07/2024 1,433

Câu 5:

Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:

∆ABH = ∆DBH.

Xem đáp án » 11/07/2024 1,272

Câu 6:

Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:

EM > ED.

Xem đáp án » 11/07/2024 1,232
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua