Câu hỏi:

11/07/2024 1,523

Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:

∆ABH = ∆DBH.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Tia DE cắt tia BA tại M. Chứng minh rằng: tam giác ABH = tam giác DBH (ảnh 1)

∆ABH và ∆DBH có:

BA = BD (theo giả thiết),

BH là cạnh chung,

AH = DH (H là trung điểm của AD).

Nên ∆ABH = ∆DBH (c.c.c).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác cân ABC tại đỉnh A. Chứng minh AH vuông góc với BC. (ảnh 1)

∆ABC cân tại A (giả thiết)

Mà AH là trung tuyến (H là trung điểm của BC).

Nên AH là đường cao của ∆ABC (tính chất tam giác cân).

Vậy AH BC.

Lời giải

Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB lấy điểm N sao cho BM  (ảnh 1)

Ta có \[\widehat {ABM} + \widehat {ABC} = 180^\circ \] (hai góc kề bù),

   \[\widehat {ACN} + \widehat {ACB} = 180^\circ \] (hai góc kề bù).

\[\widehat {ABC} = \widehat {ACB}\] nên \[\widehat {ABM} = \widehat {ACN}\].

∆ABM và ∆ACN có:

AB = AC (∆ABC cân tại đỉnh A).

\[\widehat {ABM} = \widehat {ACN}\] (chứng minh trên).

BM = CN (theo giả thiết).

Nên ∆ABM = ∆ACN (c.g.c).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP