Giải VTH Toán 7 KNTT Bài tập ôn tập cuối năm Hình học và Đo lường có đáp án
24 người thi tuần này 4.6 1.2 K lượt thi 10 câu hỏi
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 12 Đề thi học kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
30 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 1 có đáp án
17 Bài tập Xác định các cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía trên hình vẽ cho trước (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

∆ADM và ∆BDC có:
AD = DB (do D là trung điểm của AB)
\[\widehat {A{\rm{D}}M} = \widehat {B{\rm{D}}C}\] (hai góc đối đỉnh)
DM = DC (giả thiết)
Nên ∆ADM = ∆BDC (c.g.c).
Suy ra AM = BC (hai cạnh tương ứng) và \[\widehat {MAD} = \widehat {CBD}\] (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AM // BC (dấu hiệu nhận biết hai đường thẳng song song).
Lời giải

∆AEN và ∆CEB có:
AE = CE (E là trung điểm của AC)
\[\widehat {A{\rm{E}}N} = \widehat {CEB}\] (hai góc đối đỉnh)
EN = EB (theo giả thiết)
Nên ∆AEN = ∆CEB (c.g.c).
Suy ra \[\widehat {E{\rm{A}}N} = \widehat {ECB}\] (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AN // BC (dấu hiệu nhận biết hai đường thẳng song song).
Lời giải

Ta có AM // BC (chứng minh trên),
AN // BC (chứng minh trên) nên AM và AN trùng nhau (theo tiên đề Euclid).
Từ đó suy ra ba điểm M, A, N thẳng hàng.
Ta lại có AM = BC (chứng minh trên), AN = BC (chứng minh trên – do ∆AEN = ∆CEB),
do đó AM = AN.
Từ đó suy ra A là trung điểm của đoạn MN.
Lời giải

∆ABC cân tại A (giả thiết)
Mà AH là trung tuyến (H là trung điểm của BC).
Nên AH là đường cao của ∆ABC (tính chất tam giác cân).
Vậy AH ⊥ BC.
Lời giải

Ta có \[\widehat {ABM} + \widehat {ABC} = 180^\circ \] (hai góc kề bù),
\[\widehat {ACN} + \widehat {ACB} = 180^\circ \] (hai góc kề bù).
Mà \[\widehat {ABC} = \widehat {ACB}\] nên \[\widehat {ABM} = \widehat {ACN}\].
∆ABM và ∆ACN có:
AB = AC (∆ABC cân tại đỉnh A).
\[\widehat {ABM} = \widehat {ACN}\] (chứng minh trên).
BM = CN (theo giả thiết).
Nên ∆ABM = ∆ACN (c.g.c).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.