Giải VTH Toán 7 KNTT Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác có đáp án
55 người thi tuần này 4.6 1.1 K lượt thi 12 câu hỏi
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 02
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Điểm O cách đều ba đỉnh của tam giác ABC khi O là giao điểm của ba đường trung trực của tam giác.
Lời giải
Đáp án đúng là: D
H là giao điểm của ba đường trung trực của tam giác ABC, khi đó H cách đều ba đỉnh của tam giác ABC.
Lời giải
Đáp án đúng là: D
H là giao điểm của ba đường cao của tam giác ABC, khi đó, H là trực tâm của tam giác ABC và vị trí điểm H:
+ Nằm bên trong tam giác ABC khi tam giác này là tam giác nhọn;

+ Trùng với A khi tam giác ABC là tam giác vuông tại A;

+ Nằm bên ngoài tam giác ABC khi tam giác này là tam giác tù;

Vậy điểm H có thể nằm ngoài tam giác ABC.
Lời giải

Ta kí hiệu các đường cao AI, BJ, CK, đồng quy tại H và các góc như hình vẽ.
Trong tam giác vuông JHA có \(\widehat {{A_1}} + \widehat {{H_1}} = 90^\circ \).
Trong tam giác vuông KHA có \(\widehat {{H_2}} + \widehat {{A_2}} = 90^\circ \).
Suy ra \(\widehat {{A_1}} + \widehat {{H_1}} + \widehat {{H_2}} + \widehat {{A_2}} = 180^\circ \),
hay \(\left( {\widehat {{H_1}} + \widehat {{H_2}}} \right) + \left( {\widehat {{A_1}} + \widehat {{A_2}}} \right) = 180^\circ \), tức là \(\widehat {BHC} + \widehat {JAK} = 180^\circ \).
Ta lại có \(\widehat {JAK} = \widehat {BAC} = 100^\circ \) (đối đỉnh),
suy ra \(\widehat {BHC} = 180^\circ - \widehat {JAK} = 180^\circ - 100^\circ = 80^\circ \).
Lời giải

Giả sử O nằm trên cạnh BC thì theo giả thiết, OB = OC nên O là trung điểm của BC.
Từ giả thiết OA = OB = OC nên tam giác OAB cân tại O, tam giác OAC cân tại O.
Vậy \(\widehat A = \widehat {{A_1}} + \widehat {{A_2}} = \widehat B + \widehat C\), mà \(\widehat A + \widehat B + \widehat C = 180^\circ \), hay \(2\widehat A = 180^\circ \), suy ra \(\widehat A = 180^\circ \) hay tam giác ABC vuông tại A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
217 Đánh giá
50%
40%
0%
0%
0%