Câu hỏi:

13/07/2024 1,385

Cho ∆ABC vuông tại A. Tia phân giác của \(\widehat {ABC}\) cắt AC tại E. Từ E kẻ EH BC tại H và EH cắt AB tại K.

Chứng minh ∆KBC là tam giác cân.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh ∆KBC là tam giác cân. (ảnh 1)

Tam giác KBC có hai đường cao CA và KH cắt nhau tại E nên E là trực tâm của tam giác, do đó BE là đường cao của tam giác KBC.

Mặt khác có BE là đường phân giác của \(\widehat {ABC}\) nên BE vừa là đường cao vừa là đường phân giác trong của tam giác KBC, suy ra tam giác BKC cân tại B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong tam giác ABC có điểm O cách đều ba đỉnh tam giác. Khi đó O là giao điểm của:

A. Ba đường cao;

B. Ba đường trung tuyến;

C. Ba đường trung trực;

D. Ba đường phân giác.

Xem đáp án » 13/07/2024 5,697

Câu 2:

Cho ∆ABC vuông tại A. Tia phân giác của \(\widehat {ABC}\) cắt AC tại E. Từ E kẻ EH BC tại H và EH cắt AB tại K.

Chứng minh BE là đường trung trực của AH.

Xem đáp án » 13/07/2024 3,638

Câu 3:

Cho ∆ABC vuông tại A. Tia phân giác của \(\widehat {ABC}\) cắt AC tại E. Từ E kẻ EH BC tại H và EH cắt AB tại K.

Chứng minh AE = EH.

Xem đáp án » 13/07/2024 2,938

Câu 4:

Gọi H là giao điểm của ba đường cao của tam giác ABC, ta có:

A. Điểm H là trọng tâm của tam giác ABC;

B. Điểm H luôn nằm trong tam giác ABC;

C. Điểm H cách đều ba cạnh của tam giác ABC;

D. Điểm H có thể nằm ngoài tam giác ABC.

Xem đáp án » 13/07/2024 2,042

Câu 5:

Trên bản đồ, ba khu dân cư được quy hoạch tại ba điểm A, B, C không thẳng hàng. Hãy tìm trên bản đồ đó một điểm M cách đều A, B, C để quy hoạch một trường học.

Xem đáp án » 05/10/2022 2,011

Câu 6:

Cho ∆ABC vuông tại A. Tia phân giác của \(\widehat {ABC}\) cắt AC tại E. Từ E kẻ EH BC tại H và EH cắt AB tại K.

So sánh độ dài hai cạnh AE và EC.

Xem đáp án » 13/07/2024 1,693
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua