Câu hỏi:

13/07/2024 1,841

Cho ∆ABC vuông tại A. Tia phân giác của \(\widehat {ABC}\) cắt AC tại E. Từ E kẻ EH BC tại H và EH cắt AB tại K.

Chứng minh ∆KBC là tam giác cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh ∆KBC là tam giác cân. (ảnh 1)

Tam giác KBC có hai đường cao CA và KH cắt nhau tại E nên E là trực tâm của tam giác, do đó BE là đường cao của tam giác KBC.

Mặt khác có BE là đường phân giác của \(\widehat {ABC}\) nên BE vừa là đường cao vừa là đường phân giác trong của tam giác KBC, suy ra tam giác BKC cân tại B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Điểm O cách đều ba đỉnh của tam giác ABC khi O là giao điểm của ba đường trung trực của tam giác.

Lời giải

Chứng minh BE là đường trung trực của AH.  (ảnh 1)

Từ ∆ABE = ∆HBE, suy ra AB = HB (hai cạnh tương ứng), suy ra tam giác ABH cân tại B có BE là đường phân giác nên BE cũng là đường trung trực của AH.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP