Giải SBT Toán 7 Bài 11: Định lí và chứng minh định lí có đáp án

46 người thi tuần này 4.6 1.1 K lượt thi 9 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Lời giải:

Giả thiết: Một đường thẳng cắt hai đường thẳng song song.

Kết luận: Hai góc so le trong tạo thành bằng nhau.

Lời giải

Hướng dẫn giải:

Media VietJack

Giả thiết: a // b; c cắt a tại A, c cắt b tại B, tạo thành một cặp góc so le trong \(\widehat {{A_1}};\widehat {{B_1}}\).

Kết luận: \(\widehat {{A_1}} = \widehat {{B_1}}\).

Lời giải

Lời giải:

Giả thiết: Một đường thẳng cắt hai đường thẳng tạo thành cặp góc so le trong bằng nhau.

Kết luận: hai đường thẳng đó song song.

Lời giải

Hướng dẫn giải:
Media VietJack

Giả thiết: c cắt a tại A, c cắt b tại B, tạo thành cặp góc so le trong \(\widehat {{A_1}};\widehat {{B_1}}\) và \(\widehat {{A_1}} = \widehat {{B_1}}\)

Kết luận: a // b.

Lời giải

Lời giải:

Media VietJack

Giả thiết:

- Hai góc xOy; x’Oy’ là hai góc đối đỉnh.

- Ou là tia phân giác của góc xOy, Ou’ là tia đối của tia Ou.

Kết luận: Ou’ là tia phân giác của góc x’Oy’.

Chứng minh định lí:

Ta có:

\(\widehat {x'Ou'}\) và \(\widehat {xOu}\) là hai góc đối đỉnh nên \(\widehat {x'Ou'}\) = \(\widehat {xOu}\).

\(\widehat {y'Ou'}\) và \(\widehat {yOu}\) là hai góc đối đỉnh nên \(\widehat {y'Ou'}\) = \(\widehat {yOu}\).

Lại có: Ou là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOu}\) = \(\widehat {yOu}\).

Suy ra: \(\widehat {x'Ou'}\) = \(\widehat {y'Ou'}\).

Do đó, Ou’ là tia phân giác của \(\widehat {x'Oy'}\).

Vậy Ou’ là tia phân giác của \(\widehat {x'Oy'}\) (điều phải chứng minh).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

223 Đánh giá

50%

40%

0%

0%

0%