Giải SBT Toán 7 KNTT Bài 32. Quan hệ giữa đường vuông góc và đường xiên có đáp án

31 người thi tuần này 4.6 1.1 K lượt thi 5 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Cho hai đường thẳng song song c và d. Chứng minh rằng khoảng cách từ mọi điểm thuộc c đến (ảnh 1)

Lấy M và M’ thuộc đường thẳng c (M khác M’).

Kẻ MH và M’H’ vuông góc với đường thẳng d (H và H’ thuộc đường thẳng d).

Do MH d và M’H’ d nên suy ra MH // M’H’.

Xét ∆MHH’ và ∆H’M’M có:

Cạnh MH’ chung

H'^1=M^2 (so le trong, do MM’ // HH’)

H'^1=M^2 (so le trong, do MH // M’H’)

Do đó ∆MHH’ = ∆H’M’M (g.c.g)

Suy ra MH = M’H’ (hai cặp cạnh tương ứng). Độ dài MH gọi là khoảng cách từ c đến d.

Vậy khoảng cách từ mọi điểm thuộc c đến đường thẳng d bằng nhau và bằng khoảng cách từ mọi điểm thuộc đường thẳng d đến đường thẳng c.

Lời giải

Cho hai điểm phân biệt M, M’ ở cùng phía đối với đường thẳng d (M, M’ không thuộc d) (ảnh 1)

Kẻ MH và M’H’ vuông góc với đường thẳng d (H và H’ thuộc đường thẳng d).

Do MH d và M’H’ d nên suy ra MH // M’H’.

Xét ∆MHH’ và ∆H’M’M có:

Cạnh MH’ chung

 HMH'^=M'H'M^ (so le trong, do MH // M’H’)

MH = H’M’ (gt)

Do đó ∆MHH’ = ∆H’M’M (c.g.c).

Suy ra MH'H^=H'MM'^  (hai góc tương ứng).

Hai góc trên ở vị trí so le trong nên ta suy ra được MM’ // d.

Lời giải

Dùng thước hai lề ta có thể dựng cặp đường thẳng song song với khoảng cách h không đổi. (ảnh 1)

Do P thuộc đường thẳng x’ nên khoảng cách từ P đến x là PK và bằng h (vì x // x’) (1)

Do P thuộc đường thẳng y’ nên khoảng cách từ P đến y là PJ và bằng h (vì y // y’) (2)

Từ (1) và (2) suy ra: Khoảng cách từ P đến x bằng khoảng cách từ P đến y.

Hay điểm P cách đều hai đường thẳng x và y.

Do đó P nằm trên đường phân giác của góc xOy (đpcm).

Lời giải

Cho tam giác ABC cân tại A. Chứng minh rằng khoảng cách từ B đến đường thẳng AC bằng (ảnh 1)

Kẻ BD AC (D AC); CE AB (E AB).

Xét ∆ADB và ∆AEC có:

A^ chung

ADB^=AEC^=90°

AB = AC (Do ∆ABC cân tại A)

Do đó ∆ADB = ∆AEC (cạnh huyền – góc nhọn)

Suy ra BD = CE (hai cạnh tương ứng) (đpcm).

Lời giải

 

Cho tam giác ABC cân tại A và một điểm M tùy ý thuộc đoạn thẳng BC, M khác B và C (ảnh 1)

Gọi BG và CH là đường cao kẻ từ B và C của ∆ABC.

Gọi MD, ME lần lượt là khoảng cách từ M đến AB và AC.

Kẻ MF song song với cạnh AC (F AB).

MF giao với BG tại điểm I.

Tương tự cách làm của Bài 9.8 trong tam giác ABC cân tại A thì khoảng cách từ B đến AC bằng khoảng cách từ C đến AB. Ta dễ dàng suy ra được: BG = CH (4)

Tổng khoảng cách từ M đến AB và AC là MD + ME (1)

Ta có:

+) BG và ME cùng vuông góc với AC nên suy ra ME // BG hay ME // IG

Lại có: MF song song với AC hay MI // EG.

Suy ra MIGE là hình chữ nhật.

Do đó ME = IG (2)

+) Tam giác FBM cân tại F (do hai góc B và M bằng nhau). Với MD là khoảng cách từ M đến FB và BI là khoảng cách từ điểm B đến FM. Chứng minh tương tự Bài 9.8, ta dễ dàng suy ra được MD = BI (3)

Từ (1), (2), (3), (4) nên suy ra: MD + ME = BI + IG = BG = CH.

Vậy tổng khoảng cách từ M đến AB và AC chinh bằng khoảng cách từ C đến AB nên không đổi (đpcm).

4.6

220 Đánh giá

50%

40%

0%

0%

0%