Câu hỏi:

12/07/2024 1,001

Dùng thước hai lề ta có thể dựng cặp đường thẳng song song với khoảng cách h không đổi.

Cho góc xOy. Dùng thước hai lề dựng cặp đường thẳng song song gồm đường thẳng chứa tia Ox và đường thẳng x’ (sao cho x’ cắt Oy) rồi dùng thước đo hai lề đó, dựng cặp đường thẳng song song gồm đường thẳng chứa tia Oy và đường thẳng y’ (sao cho y’ cắt Ox). Hai đường thẳng x’ và y’ cắt nhau tại P. Chứng minh rằng tia OP là tia phân giác của góc xOy.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Dùng thước hai lề ta có thể dựng cặp đường thẳng song song với khoảng cách h không đổi. (ảnh 1)

Do P thuộc đường thẳng x’ nên khoảng cách từ P đến x là PK và bằng h (vì x // x’) (1)

Do P thuộc đường thẳng y’ nên khoảng cách từ P đến y là PJ và bằng h (vì y // y’) (2)

Từ (1) và (2) suy ra: Khoảng cách từ P đến x bằng khoảng cách từ P đến y.

Hay điểm P cách đều hai đường thẳng x và y.

Do đó P nằm trên đường phân giác của góc xOy (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A và một điểm M tùy ý thuộc đoạn thẳng BC, M khác B và C. Chứng minh rằng tổng khoảng cách từ điểm M đến các đường thẳng AB, AC là một số không đổi.

Xem đáp án » 12/07/2024 2,184

Câu 2:

Cho tam giác ABC cân tại A. Chứng minh rằng khoảng cách từ B đến đường thẳng AC bằng khoảng cách từ C đến đường thẳng AB.

Xem đáp án » 12/07/2024 874

Câu 3:

Cho hai đường thẳng song song c và d. Chứng minh rằng khoảng cách từ mọi điểm thuộc c đến đường thẳng d bằng nhau và bằng khoảng cách từ mọi điểm thuộc đường thẳng d đến đường thẳng c (khoảng cách đó được gọi là khoảng cách giữa hai đường thẳng song song c và d).

Xem đáp án » 12/07/2024 704

Câu 4:

Cho hai điểm phân biệt M, M’ ở cùng phía đối với đường thẳng d (M, M’ không thuộc d). Chứng minh rằng nếu M, M’ có cùng khoảng cách đến đường thẳng d thì MM’ song song với d.

Xem đáp án » 12/07/2024 594

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL