Câu hỏi:

12/07/2024 1,311

Cho hai điểm phân biệt M, M’ ở cùng phía đối với đường thẳng d (M, M’ không thuộc d). Chứng minh rằng nếu M, M’ có cùng khoảng cách đến đường thẳng d thì MM’ song song với d.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai điểm phân biệt M, M’ ở cùng phía đối với đường thẳng d (M, M’ không thuộc d) (ảnh 1)

Kẻ MH và M’H’ vuông góc với đường thẳng d (H và H’ thuộc đường thẳng d).

Do MH d và M’H’ d nên suy ra MH // M’H’.

Xét ∆MHH’ và ∆H’M’M có:

Cạnh MH’ chung

 HMH'^=M'H'M^ (so le trong, do MH // M’H’)

MH = H’M’ (gt)

Do đó ∆MHH’ = ∆H’M’M (c.g.c).

Suy ra MH'H^=H'MM'^  (hai góc tương ứng).

Hai góc trên ở vị trí so le trong nên ta suy ra được MM’ // d.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Cho tam giác ABC cân tại A và một điểm M tùy ý thuộc đoạn thẳng BC, M khác B và C (ảnh 1)

Gọi BG và CH là đường cao kẻ từ B và C của ∆ABC.

Gọi MD, ME lần lượt là khoảng cách từ M đến AB và AC.

Kẻ MF song song với cạnh AC (F AB).

MF giao với BG tại điểm I.

Tương tự cách làm của Bài 9.8 trong tam giác ABC cân tại A thì khoảng cách từ B đến AC bằng khoảng cách từ C đến AB. Ta dễ dàng suy ra được: BG = CH (4)

Tổng khoảng cách từ M đến AB và AC là MD + ME (1)

Ta có:

+) BG và ME cùng vuông góc với AC nên suy ra ME // BG hay ME // IG

Lại có: MF song song với AC hay MI // EG.

Suy ra MIGE là hình chữ nhật.

Do đó ME = IG (2)

+) Tam giác FBM cân tại F (do hai góc B và M bằng nhau). Với MD là khoảng cách từ M đến FB và BI là khoảng cách từ điểm B đến FM. Chứng minh tương tự Bài 9.8, ta dễ dàng suy ra được MD = BI (3)

Từ (1), (2), (3), (4) nên suy ra: MD + ME = BI + IG = BG = CH.

Vậy tổng khoảng cách từ M đến AB và AC chinh bằng khoảng cách từ C đến AB nên không đổi (đpcm).

Lời giải

Cho tam giác ABC cân tại A. Chứng minh rằng khoảng cách từ B đến đường thẳng AC bằng (ảnh 1)

Kẻ BD AC (D AC); CE AB (E AB).

Xét ∆ADB và ∆AEC có:

A^ chung

ADB^=AEC^=90°

AB = AC (Do ∆ABC cân tại A)

Do đó ∆ADB = ∆AEC (cạnh huyền – góc nhọn)

Suy ra BD = CE (hai cạnh tương ứng) (đpcm).