Câu hỏi:

12/07/2024 1,279

Cho hai điểm phân biệt M, M’ ở cùng phía đối với đường thẳng d (M, M’ không thuộc d). Chứng minh rằng nếu M, M’ có cùng khoảng cách đến đường thẳng d thì MM’ song song với d.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai điểm phân biệt M, M’ ở cùng phía đối với đường thẳng d (M, M’ không thuộc d) (ảnh 1)

Kẻ MH và M’H’ vuông góc với đường thẳng d (H và H’ thuộc đường thẳng d).

Do MH d và M’H’ d nên suy ra MH // M’H’.

Xét ∆MHH’ và ∆H’M’M có:

Cạnh MH’ chung

 HMH'^=M'H'M^ (so le trong, do MH // M’H’)

MH = H’M’ (gt)

Do đó ∆MHH’ = ∆H’M’M (c.g.c).

Suy ra MH'H^=H'MM'^  (hai góc tương ứng).

Hai góc trên ở vị trí so le trong nên ta suy ra được MM’ // d.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Cho tam giác ABC cân tại A và một điểm M tùy ý thuộc đoạn thẳng BC, M khác B và C (ảnh 1)

Gọi BG và CH là đường cao kẻ từ B và C của ∆ABC.

Gọi MD, ME lần lượt là khoảng cách từ M đến AB và AC.

Kẻ MF song song với cạnh AC (F AB).

MF giao với BG tại điểm I.

Tương tự cách làm của Bài 9.8 trong tam giác ABC cân tại A thì khoảng cách từ B đến AC bằng khoảng cách từ C đến AB. Ta dễ dàng suy ra được: BG = CH (4)

Tổng khoảng cách từ M đến AB và AC là MD + ME (1)

Ta có:

+) BG và ME cùng vuông góc với AC nên suy ra ME // BG hay ME // IG

Lại có: MF song song với AC hay MI // EG.

Suy ra MIGE là hình chữ nhật.

Do đó ME = IG (2)

+) Tam giác FBM cân tại F (do hai góc B và M bằng nhau). Với MD là khoảng cách từ M đến FB và BI là khoảng cách từ điểm B đến FM. Chứng minh tương tự Bài 9.8, ta dễ dàng suy ra được MD = BI (3)

Từ (1), (2), (3), (4) nên suy ra: MD + ME = BI + IG = BG = CH.

Vậy tổng khoảng cách từ M đến AB và AC chinh bằng khoảng cách từ C đến AB nên không đổi (đpcm).

Lời giải

Cho tam giác ABC cân tại A. Chứng minh rằng khoảng cách từ B đến đường thẳng AC bằng (ảnh 1)

Kẻ BD AC (D AC); CE AB (E AB).

Xét ∆ADB và ∆AEC có:

A^ chung

ADB^=AEC^=90°

AB = AC (Do ∆ABC cân tại A)

Do đó ∆ADB = ∆AEC (cạnh huyền – góc nhọn)

Suy ra BD = CE (hai cạnh tương ứng) (đpcm).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay