Câu hỏi:
12/07/2024 705Cho hai đường thẳng song song c và d. Chứng minh rằng khoảng cách từ mọi điểm thuộc c đến đường thẳng d bằng nhau và bằng khoảng cách từ mọi điểm thuộc đường thẳng d đến đường thẳng c (khoảng cách đó được gọi là khoảng cách giữa hai đường thẳng song song c và d).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lấy M và M’ thuộc đường thẳng c (M khác M’).
Kẻ MH và M’H’ vuông góc với đường thẳng d (H và H’ thuộc đường thẳng d).
Do MH ⏊ d và M’H’ ⏊ d nên suy ra MH // M’H’.
Xét ∆MHH’ và ∆H’M’M có:
Cạnh MH’ chung
(so le trong, do MM’ // HH’)
(so le trong, do MH // M’H’)
Do đó ∆MHH’ = ∆H’M’M (g.c.g)
Suy ra MH = M’H’ (hai cặp cạnh tương ứng). Độ dài MH gọi là khoảng cách từ c đến d.
Vậy khoảng cách từ mọi điểm thuộc c đến đường thẳng d bằng nhau và bằng khoảng cách từ mọi điểm thuộc đường thẳng d đến đường thẳng c.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A và một điểm M tùy ý thuộc đoạn thẳng BC, M khác B và C. Chứng minh rằng tổng khoảng cách từ điểm M đến các đường thẳng AB, AC là một số không đổi.
Câu 2:
Dùng thước hai lề ta có thể dựng cặp đường thẳng song song với khoảng cách h không đổi.
Cho góc xOy. Dùng thước hai lề dựng cặp đường thẳng song song gồm đường thẳng chứa tia Ox và đường thẳng x’ (sao cho x’ cắt Oy) rồi dùng thước đo hai lề đó, dựng cặp đường thẳng song song gồm đường thẳng chứa tia Oy và đường thẳng y’ (sao cho y’ cắt Ox). Hai đường thẳng x’ và y’ cắt nhau tại P. Chứng minh rằng tia OP là tia phân giác của góc xOy.
Câu 3:
Cho tam giác ABC cân tại A. Chứng minh rằng khoảng cách từ B đến đường thẳng AC bằng khoảng cách từ C đến đường thẳng AB.
Câu 4:
Cho hai điểm phân biệt M, M’ ở cùng phía đối với đường thẳng d (M, M’ không thuộc d). Chứng minh rằng nếu M, M’ có cùng khoảng cách đến đường thẳng d thì MM’ song song với d.
về câu hỏi!