Câu hỏi:
13/07/2024 2,944Cho góc vuông uOv và tia Oy đi qua một điểm trong của góc đó. Vẽ tia Ox sao cho Ou là tia phân giác của góc xOy. Vẽ tia Oz sao cho Ov là tia phân giác của góc yOz. Chứng minh rằng hai góc xOy và yOz là hai góc kề bù.
Quảng cáo
Trả lời:
Lời giải:
Vì Ou là tia phân giác của góc xOy nên \(\widehat {uOy} = \widehat {uOx} = \frac{{\widehat {xOy}}}{2}\). Hay \(\widehat {xOy} = 2\widehat {uOy}\)
Vì Ov là tia phân giác của góc yOz nên \(\widehat {zOv} = \widehat {vOy} = \frac{{\widehat {zOy}}}{2}\). Hay \(\widehat {zOy} = 2\widehat {vOy}\)
Ta có: \(\widehat {xOy} + \widehat {zOy} = 2\widehat {uOy} + 2\widehat {vOy} = 2\left( {\widehat {uOy} + \widehat {vOy}} \right) = 2.\widehat {uOv}\).
Mà \(\widehat {uOv}\) là góc vuông nên \(\widehat {uOv}\) = 90o.
Do đó, \(\widehat {xOy} + \widehat {zOy} = 2.\widehat {uOv} = 2.90^\circ = 180^\circ \) (1)
Mà \(\widehat {xOy};\widehat {zOy}\) có cạnh chung là Oy (2)
Từ (1) và (2) suy ra \(\widehat {xOy};\widehat {zOy}\) là hai góc kề bù.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Giả thiết: \(\widehat {xOy} + \widehat {uHv} = 180^\circ \);\(\widehat {x'Oy'} + \widehat {uHv} = 180^\circ \).
Kết luận: \(\widehat {xOy} = \widehat {x'Oy'}\)
Chứng minh:
Ta có: \(\widehat {xOy} + \widehat {uHv} = 180^\circ \) suy ra, \(\widehat {xOy} = 180^\circ - \widehat {uHv}\) (3)
\(\widehat {x'Oy'} + \widehat {uHv} = 180^\circ \) suy ra, \(\widehat {x'Oy'} = 180^\circ - \widehat {uHv}\) (2)
Từ (1) và (2) suy ra: \(\widehat {xOy} = \widehat {x'Oy'}\) = \(180^\circ - \widehat {uHv}\)
Vậy \(\widehat {xOy} = \widehat {x'Oy'}\)
Lời giải
Lời giải:
Giả thiết:
- Hai góc xOy; x’Oy’ là hai góc đối đỉnh.
- Ou là tia phân giác của góc xOy, Ou’ là tia đối của tia Ou.
Kết luận: Ou’ là tia phân giác của góc x’Oy’.
Chứng minh định lí:
Ta có:
\(\widehat {x'Ou'}\) và \(\widehat {xOu}\) là hai góc đối đỉnh nên \(\widehat {x'Ou'}\) = \(\widehat {xOu}\).
\(\widehat {y'Ou'}\) và \(\widehat {yOu}\) là hai góc đối đỉnh nên \(\widehat {y'Ou'}\) = \(\widehat {yOu}\).
Lại có: Ou là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOu}\) = \(\widehat {yOu}\).
Suy ra: \(\widehat {x'Ou'}\) = \(\widehat {y'Ou'}\).
Do đó, Ou’ là tia phân giác của \(\widehat {x'Oy'}\).
Vậy Ou’ là tia phân giác của \(\widehat {x'Oy'}\) (điều phải chứng minh).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 02
Đề thi giữa học kì 2 Toán 7 KNTT - Đề 01 có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận