Câu hỏi:

13/07/2024 1,257

Cho định lí: “Một đường thẳng cắt hai đường thẳng song song thì tạo thành cặp góc so le trong bằng nhau”.

Hãy chỉ ra giả thiết và kết luận của định lí.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Giả thiết: Một đường thẳng cắt hai đường thẳng song song.

Kết luận: Hai góc so le trong tạo thành bằng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Media VietJack

Giả thiết: \(\widehat {xOy} + \widehat {uHv} = 180^\circ \);\(\widehat {x'Oy'} + \widehat {uHv} = 180^\circ \).

Kết luận: \(\widehat {xOy} = \widehat {x'Oy'}\)

Chứng minh:

Ta có: \(\widehat {xOy} + \widehat {uHv} = 180^\circ \) suy ra, \(\widehat {xOy} = 180^\circ - \widehat {uHv}\) (3)

\(\widehat {x'Oy'} + \widehat {uHv} = 180^\circ \) suy ra, \(\widehat {x'Oy'} = 180^\circ - \widehat {uHv}\) (2)

Từ (1) và (2) suy ra: \(\widehat {xOy} = \widehat {x'Oy'}\) = \(180^\circ - \widehat {uHv}\)

 Vậy \(\widehat {xOy} = \widehat {x'Oy'}\)

Lời giải

Lời giải:

Media VietJack

Giả thiết:

- Hai góc xOy; x’Oy’ là hai góc đối đỉnh.

- Ou là tia phân giác của góc xOy, Ou’ là tia đối của tia Ou.

Kết luận: Ou’ là tia phân giác của góc x’Oy’.

Chứng minh định lí:

Ta có:

\(\widehat {x'Ou'}\) và \(\widehat {xOu}\) là hai góc đối đỉnh nên \(\widehat {x'Ou'}\) = \(\widehat {xOu}\).

\(\widehat {y'Ou'}\) và \(\widehat {yOu}\) là hai góc đối đỉnh nên \(\widehat {y'Ou'}\) = \(\widehat {yOu}\).

Lại có: Ou là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOu}\) = \(\widehat {yOu}\).

Suy ra: \(\widehat {x'Ou'}\) = \(\widehat {y'Ou'}\).

Do đó, Ou’ là tia phân giác của \(\widehat {x'Oy'}\).

Vậy Ou’ là tia phân giác của \(\widehat {x'Oy'}\) (điều phải chứng minh).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP