Câu hỏi:
11/07/2024 1,027Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
Tam giác AED cân.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
∆ABH = ∆DBH (chứng minh trên), suy ra \[\widehat {ABE} = \widehat {DBE}\] (hai góc tương ứng).
∆BAE và ∆BDE có:
BA = BD (giả thiết),
\[\widehat {ABE} = \widehat {DBE}\] (chứng minh trên),
BE là cạnh chung.
Nên ∆BAE = ∆BDE (c.g.c) suy ra EA = ED (hai cạnh tương ứng).
Nên ∆AED cân tại E (dấu hiệu nhận biết tam giác cân).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.
Chứng minh AH ⊥ BC.
Câu 2:
Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.
Câu 3:
Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.
Câu 4:
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
Tam giác BCM là tam giác đều và CE = 2EA, biết \[\widehat {ABC}\] = 60°.
Câu 5:
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
∆ABH = ∆DBH.
Câu 6:
Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.
Gọi E là trung điểm của AC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng AN // BC.
về câu hỏi!