Câu hỏi:
11/07/2024 815Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.
Gọi I là điểm trên AM, K là điểm trên AN sao cho BI ⊥ AM; CK ⊥ AN. Chứng minh rằng tam giác AIK cân tại A, từ đó suy ra IK // MN.
Quảng cáo
Trả lời:
Ta có: ∆ABM = ∆ACN (chứng minh trên) suy ra \[\widehat {BMI} = \widehat {CNK}\] (hai góc tương ứng) và AM = AN (hai cạnh tương ứng).
∆BIM \(\left( {\widehat {BIM} = 90^\circ } \right)\) và ∆CKN \(\left( {\widehat {CKN} = 90^\circ } \right)\) có:
BM = CN (giả thiết),
\[\widehat {BMI} = \widehat {CNK}\] (chứng minh trên).
Nên ∆BIM = ∆CKN (cạnh huyền - góc nhọn).
Suy ra MI = NK (hai cạnh tương ứng).
Mà AM = AN (chứng minh trên – do ∆ABM = ∆ACN) nên AI = AK, suy ra ∆AIK cân tại A (dấu hiệu nhận biết tam giác cân).
Ta có AM = AN (chứng minh trên) nên ∆AMN cân tại A (dấu hiệu nhận biết tam giác cân).
Suy ra \[\widehat {AMN} = \frac{{180^\circ - \widehat {MAN}}}{2}\].
Ta có ∆AIK cân tại A (chứng minh trên) nên \[\widehat {AIK} = \frac{{180^\circ - \widehat {IAK}}}{2}\].
Từ đó \[\widehat {AIK} = \widehat {AMN}\] \[\left( { = \frac{{180^\circ - \widehat {MAN}}}{2}} \right)\].
Mà hai góc này ở vị trí đồng vị nên IK // MN (dấu hiệu nhận biết hai đường thẳng song song).
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.
Chứng minh AH ⊥ BC.
Câu 2:
Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.
Câu 3:
Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.
Câu 4:
Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.
Gọi E là trung điểm của AC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng AN // BC.
Câu 5:
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
Tam giác AED cân.
Câu 6:
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
∆ABH = ∆DBH.
Câu 7:
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
EM > ED.
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
Bộ 5 đề thi Giữa kì 2 Toán 7 Cánh diều cấu trúc mới có đáp án - Đề 01
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 01
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ thuận (có lời giải)
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ nghịch (có lời giải)
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận