Câu hỏi:

11/07/2024 725

Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.

Gọi I là điểm trên AM, K là điểm trên AN sao cho BI AM; CK AN. Chứng minh rằng tam giác AIK cân tại A, từ đó suy ra IK // MN.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi I là điểm trên AM, K là điểm trên AN sao cho BI ⊥ AM; CK ⊥ AN. Chứng minh  (ảnh 1)

Ta có: ∆ABM = ∆ACN (chứng minh trên) suy ra \[\widehat {BMI} = \widehat {CNK}\] (hai góc tương ứng) và AM = AN (hai cạnh tương ứng).

∆BIM \(\left( {\widehat {BIM} = 90^\circ } \right)\) và ∆CKN \(\left( {\widehat {CKN} = 90^\circ } \right)\) có:

          BM = CN (giả thiết),

\[\widehat {BMI} = \widehat {CNK}\] (chứng minh trên).

Nên ∆BIM = ∆CKN (cạnh huyền - góc nhọn).

Suy ra MI = NK (hai cạnh tương ứng).

Mà AM = AN (chứng minh trên – do ∆ABM = ∆ACN) nên AI = AK, suy ra ∆AIK cân tại A (dấu hiệu nhận biết tam giác cân).

Ta có AM = AN (chứng minh trên) nên ∆AMN cân tại A (dấu hiệu nhận biết tam giác cân).

Suy ra \[\widehat {AMN} = \frac{{180^\circ - \widehat {MAN}}}{2}\].

Ta có ∆AIK cân tại A (chứng minh trên) nên \[\widehat {AIK} = \frac{{180^\circ - \widehat {IAK}}}{2}\].

Từ đó \[\widehat {AIK} = \widehat {AMN}\] \[\left( { = \frac{{180^\circ - \widehat {MAN}}}{2}} \right)\].

Mà hai góc này ở vị trí đồng vị nên IK // MN (dấu hiệu nhận biết hai đường thẳng song song).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.

Chứng minh AH BC.

Xem đáp án » 11/07/2024 2,942

Câu 2:

Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.

Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB lấy điểm N sao cho BM = CN. Chứng minh rằng ∆ABM = ∆ACN.

Xem đáp án » 11/07/2024 2,055

Câu 3:

Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.

Chứng minh rằng ∆ADM = ∆BDC. Từ đó suy ra AM = BC và AM // BC

Xem đáp án » 11/07/2024 1,650

Câu 4:

Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.

Gọi E là trung điểm của AC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng AN // BC.

Xem đáp án » 11/07/2024 1,287

Câu 5:

Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:

Tam giác AED cân.

Xem đáp án » 11/07/2024 1,109

Câu 6:

Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:

∆ABH = ∆DBH.

Xem đáp án » 11/07/2024 992

Câu 7:

Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:

Tam giác BCM là tam giác đều và CE = 2EA, biết \[\widehat {ABC}\] = 60°.

Xem đáp án » 11/07/2024 978

Bình luận


Bình luận