Câu hỏi:

11/07/2024 915

Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.

Gọi I là điểm trên AM, K là điểm trên AN sao cho BI AM; CK AN. Chứng minh rằng tam giác AIK cân tại A, từ đó suy ra IK // MN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi I là điểm trên AM, K là điểm trên AN sao cho BI ⊥ AM; CK ⊥ AN. Chứng minh  (ảnh 1)

Ta có: ∆ABM = ∆ACN (chứng minh trên) suy ra \[\widehat {BMI} = \widehat {CNK}\] (hai góc tương ứng) và AM = AN (hai cạnh tương ứng).

∆BIM \(\left( {\widehat {BIM} = 90^\circ } \right)\) và ∆CKN \(\left( {\widehat {CKN} = 90^\circ } \right)\) có:

          BM = CN (giả thiết),

\[\widehat {BMI} = \widehat {CNK}\] (chứng minh trên).

Nên ∆BIM = ∆CKN (cạnh huyền - góc nhọn).

Suy ra MI = NK (hai cạnh tương ứng).

Mà AM = AN (chứng minh trên – do ∆ABM = ∆ACN) nên AI = AK, suy ra ∆AIK cân tại A (dấu hiệu nhận biết tam giác cân).

Ta có AM = AN (chứng minh trên) nên ∆AMN cân tại A (dấu hiệu nhận biết tam giác cân).

Suy ra \[\widehat {AMN} = \frac{{180^\circ - \widehat {MAN}}}{2}\].

Ta có ∆AIK cân tại A (chứng minh trên) nên \[\widehat {AIK} = \frac{{180^\circ - \widehat {IAK}}}{2}\].

Từ đó \[\widehat {AIK} = \widehat {AMN}\] \[\left( { = \frac{{180^\circ - \widehat {MAN}}}{2}} \right)\].

Mà hai góc này ở vị trí đồng vị nên IK // MN (dấu hiệu nhận biết hai đường thẳng song song).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác cân ABC tại đỉnh A. Chứng minh AH vuông góc với BC. (ảnh 1)

∆ABC cân tại A (giả thiết)

Mà AH là trung tuyến (H là trung điểm của BC).

Nên AH là đường cao của ∆ABC (tính chất tam giác cân).

Vậy AH BC.

Lời giải

Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB lấy điểm N sao cho BM  (ảnh 1)

Ta có \[\widehat {ABM} + \widehat {ABC} = 180^\circ \] (hai góc kề bù),

   \[\widehat {ACN} + \widehat {ACB} = 180^\circ \] (hai góc kề bù).

\[\widehat {ABC} = \widehat {ACB}\] nên \[\widehat {ABM} = \widehat {ACN}\].

∆ABM và ∆ACN có:

AB = AC (∆ABC cân tại đỉnh A).

\[\widehat {ABM} = \widehat {ACN}\] (chứng minh trên).

BM = CN (theo giả thiết).

Nên ∆ABM = ∆ACN (c.g.c).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay