Câu hỏi:

19/10/2022 5,720

Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Khẳng định nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0), ta có:

Nếu ∆ < 0 thì f(x) cùng dấu với a với mọi giá trị x.

Do đó phương án B, D đều sai.

Nếu ∆ = 0 và x0=b2a là nghiệm kép của f(x) thì f(x) cùng dấu với a với mọi x ≠ x0.

Do đó phương án C đúng.

Nếu ∆ > 0 và x1, x2 là hai nghiệm của f(x) (x1 < x2) thì f(x) trái dấu với a với mọi x trong khoảng (x1; x2); f(x) cùng dấu với a với mọi x thuộc hai khoảng (–∞; x1); (x2; +∞).

Do đó phương án A sai.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có f(x) ≤ 0, x ℝ khi và chỉ khi a < 0 và ∆ ≤ 0.

Ta chọn phương án A.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tam thức bậc hai có dạng f(x) = ax2 + bx + c, với a ≠ 0.

Ta thấy chỉ có đa thức ở phương án B có dạng f(x) = ax2 + bx + c với a = 1, b = 2 và c = 10.

Vậy ta chọn phương án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP