Câu hỏi:

19/10/2022 2,140

Cho bất phương trình f(x) = ax2 + bx + c > 0, biết a < 0 và f(x) có nghiệm kép x0. Khi đó tập nghiệm của bất phương trình là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Theo đề, ta có f(x) = ax2 + bx + c > 0 (với a < 0) và có nghiệm kép x0.

Suy ra:

f(x) âm với mọi x thuộc hai khoảng (–∞; x0) và (x0; +∞);

f(x) = 0 khi x = x0.

Vậy bất phương trình ax2 + bx + c > 0 vô nghiệm.

Khi đó tập nghiệm của bất phương trình ax2 + bx + c > 0 là: .

Ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Bất phương trình –x2 + 2x + 1 ≥ 0.

Xét phương án A:

Vì –52 + 2.5 + 1 = –14 < 0.

Nên x = 5 không là nghiệm của bất phương trình –x2 + 2x + 1 ≥ 0.

Do đó phương án A sai.

Xét phương án B:

Vì –22 + 2.2 + 1 = 1 > 0.

Nên x = 2 là nghiệm của bất phương trình –x2 + 2x + 1 ≥ 0.

Do đó phương án B đúng.

Xét phương án C:

Vì –72 + 2.7 + 1 = –34 < 0.

Nên x = 7 không là nghiệm của bất phương trình –x2 + 2x + 1 ≥ 0.

Do đó ta loại phương án C.

Xét phương án D:

Vì –(–1)2 + 2.(–1) + 1 = –2 < 0.

Nên x = –1 không là nghiệm của bất phương trình –x2 + 2x + 1 ≥ 0.

Do đó ta loại phương án D.

Vậy ta chọn phương án B.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Bất phương trình bậc hai một ẩn x là bất phương trình có một trong các dạng:

ax2 + bx + c ≤ 0; ax2 + bx + c < 0; ax2 + bx + c ≥ 0; ax2 + bx + c > 0 với a ≠ 0.

Trong bốn phương án A, B, C, D, ta thấy chỉ có phương án A là có dạng bất phương trình bậc hai một ẩn dạng ax2 + bx + c ≤ 0 với a = 3, b = – 12 và c = 1.

Ta chọn phương án A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP