Câu hỏi:
20/10/2022 367Gieo một con xúc xắc cân đối và đồng chất. Giả sử con xúc xắc xuất hiện mặt b chấm. Xác suất sao cho phương trình x2 – bx + b – 1 = 0 (x là ẩn số) có nghiệm lớn hơn 3 là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Số phần tử của không gian mẫu là: n(Ω) = 6.
Gọi H: “Phương trình x2 – bx + b – 1 = 0 có nghiệm lớn hơn 3”.
Ta có xúc xắc xuất hiện mặt b chấm.
Suy ra b ∈ {1; 2; 3; 4; 5; 6}.
Xét phương trình x2 – bx + b – 1 = 0 (1)
∆ = (–b)2 – 4.1.(b – 1) = b2 – 4b + 4 = (b – 2)2 ≥ 0, với mọi b ∈ ℝ.
Suy ra phương trình đã cho có hai nghiệm x1, x2 là:
Theo đề, ta có phương trình đã cho có nghiệm lớn hơn 3.
Mà x2 = 1 < 3
Suy ra x1 > 3
⇔ b – 1 > 3
⇔ b > 4.
Mà b ∈ {1; 2; 3; 4; 5; 6} và 2 ≤ b ≤ 6.
Suy ra ta nhận b = 5 và b = 6.
Khi đó số phần tử của tập hợp mô tả biến cố H là: n(H) = 2.
Xác suất của biến cố H là: .
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong buổi sinh hoạt nhóm của lớp, tổ một có 12 học sinh gồm 4 học sinh nữ trong đó có Mai và 8 học sinh nam trong đó có Đức. Chia tổ thành 3 nhóm, mỗi nhóm gồm 4 học sinh và phải có ít nhất 1 học sinh nữ. Số kết quả thuận lợi cho biến cố A: “Mai và Đức cùng một nhóm” là:
Câu 2:
Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là:
Câu 3:
Một hộp quà đựng 16 dây buộc tóc cùng chất liệu, cùng kiểu dáng nhưng khác nhau về màu sắc. Trong hộp có 8 dây xanh, 5 dây đỏ, 3 dây vàng. Bạn Hoa được chọn ngẫu nhiên 6 dây từ hộp quà để làm phần thưởng cho mình. Xác suất để trong 6 dây bạn Hoa chọn có ít nhất 1 dây vàng và có không quá 4 dây đỏ là:
Câu 4:
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả 3 màu là:
Câu 5:
Có năm đoạn thẳng có độ dài lần lượt là 1 cm, 3 cm, 5 cm, 7 cm và 9 cm. Chọn ngẫu nhiên ba đoạn thẳng trong số năm đoạn thẳng trên. Xác suất để ba đoạn thẳng được chọn lập thành một tam giác là:
Câu 6:
Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai là:
Câu 7:
Xếp ngẫu nhiên 10 học sinh gồm 5 học sinh nam (trong đó có Bình) và 5 học sinh nữ (trong đó có Phương) thành một hàng ngang. Số kết quả thuận lợi cho biến cố A: “Trong 10 học sinh trên không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Bình và Phương cũng không đứng cạnh nhau” là:
về câu hỏi!