Ở Hình 21, góc A1 và góc B1 ở …………………….. của đường thẳng c; góc A1 ở …………….. đường thẳng a, góc B1 cũng ở …………………. đường thẳng b. Hai góc A1 và B1 ở vị trí như thế gọi là……………………………

Quảng cáo
Trả lời:
- Ở Hình 21, góc A1 và góc B1 ở cùng một phía của đường thẳng c; góc A1 ở phía trên đường thẳng a, góc B1 cũng ở phía trên đường thẳng b. Hai góc A1 và B1 ở vị trí như thế gọi là hai góc đồng vị.

Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có góc nhọn tạo bởi một thanh sườn với một thanh trụ của lan can bằng góc mAn.
Do An // Bz nên \(\widehat {mAn} = \widehat {ABz}\) (hai góc đồng vị). Do AB // Oy nên \(\widehat {ABz} = \widehat {BOy}\) (hai góc đồng vị). Từ đó, ta có: \(\widehat {mAn} = \widehat {BOy}\).
Ta có \(\widehat {BOy} + \widehat {BOx} = 144^\circ \) (hai góc kề nhau) và \(\widehat {BOx} = 90^\circ \) suy ra \(\widehat {BOy} = 54^\circ \) hay \(\widehat {mAn} = 54^\circ \).
Vậy góc nhọn tạo bởi một thanh sườn với một thanh trụ của lan can bằng 54°.
Lời giải
Ta có: \(\widehat {{M_2}} + \widehat {{M_1}}\) = 180° (hai góc kề bù)
Lại có a // b nên \(\widehat {{M_1}} = \widehat {{N_1}}\) (hai góc đồng vị). Suy ra: \(\widehat {{M_2}} + \widehat {{N_1}}\)= 180°.
Tương tự, ta có: \(\widehat {{M_3}} + \widehat {{M_4}} = 180^\circ \) (hai góc kề bù)
Lại có a // b nên \(\widehat {{M_4}} = \widehat {{N_4}}\) (hai góc đồng vị). Suy ra: \(\widehat {{M_3}} + \widehat {{N_4}}\)= 180°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.