Câu hỏi:

31/10/2022 1,233

Cho ∆ABC có AB = AC và B^=C^. Trên cạnh BC, lấy hai điểm D và E sao cho BD = EC. Kẻ DM vuông góc với AB (M AB) và EN vuông góc với AC (N AC). Kết luận nào sau đây đúng nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Cho ∆ABC có AB = AC và góc B= góc C. Trên cạnh BC, lấy hai điểm D và E sao cho (ảnh 1)

Xét ∆ABD và ∆ACE, có:

BD = EC (giả thiết)

ABD^=ACE^ (giả thiết)

AB = AC (giả thiết)

Do đó ∆ABD = ∆ACE (c.g.c)

Suy ra A1^=A2^ và AD = AE (cặp góc và cặp cạnh tương ứng)

Vì vậy phương án B đúng.

Xét ∆AMD và ∆ANE, có:

AMD^=ANE^=90°.

AD = AE (chứng minh trên)

A1^=A2^ (chứng minh trên)

Do đó ∆AMD = ∆ANE (cạnh huyền – góc nhọn)

Suy ra MD = EN (cặp cạnh tương ứng)

Vì vậy phương án A, C đúng.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cho đoạn thẳng BC và điểm H nằm giữa B và C. Qua H kẻ đường thẳng vuông góc (ảnh 1)

Xét ∆AHB và ∆KHB, có:

HA = HK (giả thiết)

AHB^=KHB^=90°.

BH là cạnh chung.

Do đó ∆AHB = ∆KHB (c.g.c)

Suy ra BA = BK, ABC^=KBC^ BAK^=BKA^(các cặp cạnh và cặp góc tương ứng)

Vì vậy phương án A, C, D đúng, phương án B sai.

Vậy ta chọn phương án B.

Câu 2

Cho ∆ABC có AB = AC (A^<90°). Kẻ BD vuông góc với AC (D AC) và CE vuông góc với AB (E AB). Gọi H là giao điểm của BD và CE.  

Cho bảng sau:

A

B

a. ∆AEC

1. ∆HDC

b. ∆HEB

2. ∆CDB

c. ∆BEC

3. ∆ADB

Ghép các ý ở cột A với cột B để được một đẳng thức đúng?

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho ∆ABC có AB = AC (góc A=90 độ). Kẻ BD vuông góc với AC (D ∈ AC) và CE (ảnh 1)

+) Xét ∆ADB và ∆AEC, có:

AB = AC (giả thiết)

ADB^=AEC^=90°.

BAC^ là góc chung.

Do đó ∆ADB = ∆AEC (cạnh huyền – góc nhọn)

Khi đó a – 3.

+) Vì ∆ADB = ∆AEC nên B1^=C1^ (cặp góc tương ứng) và AD = BE (cặp cạnh tương ứng)

Ta có: AD + DC = AC, AE + EB = AB

Mà AB = AC, AD = BE nên DC = EB.

Xét ∆HEB và ∆HDC, có:

HEB^=HDC^=90°

BE = DC

B1^=C1^ 

Suy raHEB = ∆HDC (g – c – g)

Do đó b – 1.

+) Xét ∆BEC và ∆CDB, có:

BEC^=CDB^=90°

BE = DC

BC là cạnh chung

Suy ra ∆BEC = ∆CDB (cạnh góc vuông – cạnh huyền)

Do đó c – 2.

Vậy a – 3, b – 1, c – 2.

Chọn đáp án C.

Câu 3

Cho hình vẽ bên.

Cho hình vẽ bên.  Khẳng định nào sau đây sai?  A. tam giác AED = tam giác AFD;   (ảnh 1)

Khẳng định nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam giác ABC có AD vuông góc với BC. Biết AB = AC = 3cm, A^=60°. Tính cạnh BC.

Cho tam giác ABC có AD vuông góc với BC. Biết AB = AC = 3cm,góc A=60 độ . Tính cạnh BC. (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình chữ nhật ABCD, M là trung điểm của cạnh BC. Kết luận nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay