Câu hỏi:

31/10/2022 226

Cho ∆MAB, ∆NAB, ∆PAB là tam giác cân chung đáy AB. Kết luận nào sau đây sai?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác MAB, tam giác NAB, tam giác PAB là tam giác cân chung đáy AB.  (ảnh 1)

Ta có ∆MAB cân tại M.

Suy ra MA = MB.

Khi đó M nằm trên đường trung trực của đoạn thẳng AB.

Chứng minh tương tự, ta được N, P cũng nằm trên đường trung trực của đoạn thẳng AB.

Do đó ba điểm M, N, P thẳng hàng.

Vì vậy phương án A, B, C đúng, phương án D sai.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vẽ bên.

Cho hình vẽ bên.  Vị trí của điểm M trên đường thẳng (a) để MA + MB nhỏ nhất là: (ảnh 1)

Vị trí của điểm M trên đường thẳng (a) để MA + MB nhỏ nhất là:

Xem đáp án » 31/10/2022 1,354

Câu 2:

Cho tam giác ABC cân tại A. Từ BE và CF lần lượt vuông góc với AC và AB (E AC, F AB). Gọi H là giao điểm của BE và CF, D là trung điểm của BC.

Cho tam giác ABC cân tại A. Từ BE và CF lần lượt vuông góc với AC và AB (ảnh 1)

Xem đáp án » 31/10/2022 313

Bình luận


Bình luận