Câu hỏi:

31/10/2022 305

Cho ∆MAB, ∆NAB, ∆PAB là tam giác cân chung đáy AB. Kết luận nào sau đây sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác MAB, tam giác NAB, tam giác PAB là tam giác cân chung đáy AB.  (ảnh 1)

Ta có ∆MAB cân tại M.

Suy ra MA = MB.

Khi đó M nằm trên đường trung trực của đoạn thẳng AB.

Chứng minh tương tự, ta được N, P cũng nằm trên đường trung trực của đoạn thẳng AB.

Do đó ba điểm M, N, P thẳng hàng.

Vì vậy phương án A, B, C đúng, phương án D sai.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình vẽ bên.

Cho hình vẽ bên.  Vị trí của điểm M trên đường thẳng (a) để MA + MB nhỏ nhất là: (ảnh 1)

Vị trí của điểm M trên đường thẳng (a) để MA + MB nhỏ nhất là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có (a) đi qua trung điểm H của đoạn thẳng AC và vuông góc với AC tại H.

Suy ra (a) là đường trung trực của đoạn thẳng AC.

Vì M (a) nên M cách đều A và C. Tức là, MA = MC.

Ta có MA + MB = MC + MB ≥ BC.

Vì vậy MA + MC nhỏ nhất khi và chỉ khi MA + MC = BC.

Tức là M là giao điểm của (a) và BC.

Khi đó M trùng N.

Vậy ta chọn phương án A.

Câu 2

Cho tam giác ABC cân tại A. Từ BE và CF lần lượt vuông góc với AC và AB (E AC, F AB). Gọi H là giao điểm của BE và CF, D là trung điểm của BC.

Cho tam giác ABC cân tại A. Từ BE và CF lần lượt vuông góc với AC và AB (ảnh 1)

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

+) Xét ∆ABE và ∆ACF, có:

BEA^=CFA^=90°

AB = AC (tính chất đường trung trực của đoạn thẳng)

BAE^ là góc chung

Do đó ∆ABE = ∆ACF (cạnh huyền – góc nhọn)

Suy ra AE = AF (hai cạnh tương ứng)

+) Xét ∆AEH và ∆AFH, có:

HEA^=HFA^=90°

AH là cạnh chung.

AE = AF (chứng minh trên)

Do đó ∆AEH = ∆AFH (cạnh góc vuông – cạnh huyền)

Suy ra EAH^=FAH^ (cặp góc tương ứng) và EH = FH (cặp cạnh tương ứng)

Ta có EAH^=FAH^ nên AH là tia phân giác BAC^ nên phát biểu B đúng.

+) Xét ∆BFH và ∆CEH, có:

BFH^=CEH^=90°

HF = HE (chứng minh trên)

BHF^=CHE^ (hai góc đối đỉnh)

Do đó ∆BFH = ∆CEH (cạnh góc vuông – góc nhọn)

Suy ra HB = HC

Do đó H thuộc đường trung trực của BC.

Mặt khác ta có AB = AC nên A cũng thuộc trung trực của BC.

Suy ra AH là đường trung trực của BC nên AH đi qua điểm D khi đó A, H, D thẳng hàng hay ta cũng có HD là trung trực của BC. Do đó phát biểu A đúng và C đúng.

Vậy chọn đáp án D.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay