Câu hỏi:

31/10/2022 719

Cho tam giác ABC cân tại A. Từ BE và CF lần lượt vuông góc với AC và AB (E AC, F AB). Gọi H là giao điểm của BE và CF, D là trung điểm của BC.

Cho tam giác ABC cân tại A. Từ BE và CF lần lượt vuông góc với AC và AB (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

+) Xét ∆ABE và ∆ACF, có:

BEA^=CFA^=90°

AB = AC (tính chất đường trung trực của đoạn thẳng)

BAE^ là góc chung

Do đó ∆ABE = ∆ACF (cạnh huyền – góc nhọn)

Suy ra AE = AF (hai cạnh tương ứng)

+) Xét ∆AEH và ∆AFH, có:

HEA^=HFA^=90°

AH là cạnh chung.

AE = AF (chứng minh trên)

Do đó ∆AEH = ∆AFH (cạnh góc vuông – cạnh huyền)

Suy ra EAH^=FAH^ (cặp góc tương ứng) và EH = FH (cặp cạnh tương ứng)

Ta có EAH^=FAH^ nên AH là tia phân giác BAC^ nên phát biểu B đúng.

+) Xét ∆BFH và ∆CEH, có:

BFH^=CEH^=90°

HF = HE (chứng minh trên)

BHF^=CHE^ (hai góc đối đỉnh)

Do đó ∆BFH = ∆CEH (cạnh góc vuông – góc nhọn)

Suy ra HB = HC

Do đó H thuộc đường trung trực của BC.

Mặt khác ta có AB = AC nên A cũng thuộc trung trực của BC.

Suy ra AH là đường trung trực của BC nên AH đi qua điểm D khi đó A, H, D thẳng hàng hay ta cũng có HD là trung trực của BC. Do đó phát biểu A đúng và C đúng.

Vậy chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có (a) đi qua trung điểm H của đoạn thẳng AC và vuông góc với AC tại H.

Suy ra (a) là đường trung trực của đoạn thẳng AC.

Vì M (a) nên M cách đều A và C. Tức là, MA = MC.

Ta có MA + MB = MC + MB ≥ BC.

Vì vậy MA + MC nhỏ nhất khi và chỉ khi MA + MC = BC.

Tức là M là giao điểm của (a) và BC.

Khi đó M trùng N.

Vậy ta chọn phương án A.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác MAB, tam giác NAB, tam giác PAB là tam giác cân chung đáy AB.  (ảnh 1)

Ta có ∆MAB cân tại M.

Suy ra MA = MB.

Khi đó M nằm trên đường trung trực của đoạn thẳng AB.

Chứng minh tương tự, ta được N, P cũng nằm trên đường trung trực của đoạn thẳng AB.

Do đó ba điểm M, N, P thẳng hàng.

Vì vậy phương án A, B, C đúng, phương án D sai.

Vậy ta chọn phương án D.