Câu hỏi:

04/11/2022 20,738

Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Vì G là trọng tâm của tam giác ABC nên ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).

Với điểm M bất kỳ, theo quy tắc ba điểm ta có:

\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)\)

                             \( = 3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} + \overrightarrow 0 = 3\overrightarrow {MG} \).

Vậy \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính vecto BC + vecto BA (ảnh 1)

Do ABCD là hình chữ nhật nên ABCD cũng là hình bình hành, áp dụng quy tắc hình bình hành ta có: \(\overrightarrow {BC} + \overrightarrow {BA} = \overrightarrow {BD} \).

Suy ra, \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\).

Theo định lí Pythagore trong tam giác vuông ABD, ta có:

BD2 = AB2 + AD2 = 42 + 32 = 25, suy ra BD = 5 (cm).

Vậy \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\)= 5 cm.

Lời giải

Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt  (ảnh 1)

Do BN = \(\frac{a}{3}\) và BC = a nên BN = \(\frac{1}{3}\)BC.

Mà N thuộc cạnh BC nên vectơ \(\overrightarrow {BN} \)\(\overrightarrow {BC} \) cùng hướng. Do đó, \(\overrightarrow {BN} = \frac{1}{3}\overrightarrow {BC} \).

Ta có \(\overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {BN} = \overrightarrow {AB} + \frac{1}{3}(\overrightarrow {AC} - \overrightarrow {AB} ) = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).

Lại có: CM = \(\frac{{2a}}{3}\), mà AC = a và M thuộc cạnh AC nên AM = \(a - \frac{{2a}}{3} = \frac{a}{3} = \frac{1}{3}AC\).

Suy ra \(\overrightarrow {AM} = \frac{1}{3}\overrightarrow {AC} \).

Và AP = x (0 < x < a), AB = a, P thuộc cạnh AB nên AP = \(\frac{x}{a}AB\).

Suy ra \(\overrightarrow {AP} = \frac{x}{a}\overrightarrow {AB} \).

Do đó, ta: \(\overrightarrow {PM} = \overrightarrow {AM} - \overrightarrow {AP} = \frac{1}{3}\overrightarrow {AC} - \frac{x}{a}\overrightarrow {AB} \).

Khi đó, \(AN \bot PM \Leftrightarrow \overrightarrow {AN} \cdot \overrightarrow {PM} = 0\)

\( \Leftrightarrow \left( {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right) \cdot \left( {\frac{1}{3}\overrightarrow {AC} - \frac{x}{a}\overrightarrow {AB} } \right) = 0\)

\( \Leftrightarrow \frac{2}{9}\overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{2x}}{{3a}}{\overrightarrow {AB} ^2} - \frac{x}{{3a}}\overrightarrow {AB} \cdot \overrightarrow {AC} + \frac{1}{9}{\overrightarrow {AC} ^2} = 0\)

\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right)\overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{2x}}{{3a}}.{a^2} + \frac{1}{9}.{a^2} = 0\) (do AB = AC = a)

\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right) \cdot \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot cos\left( {\overrightarrow {AB} ,\,\,\overrightarrow {AC} } \right) - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)

\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right) \cdot a \cdot a \cdot cos60^\circ - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)

\( \Leftrightarrow \frac{{2a - 3x}}{{9a}} \cdot \frac{{{a^2}}}{2} - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)

\( \Leftrightarrow \frac{{\left( {2a - 3x} \right)a}}{{18}} - \frac{{12xa}}{{18}} + \frac{{2{a^2}}}{{18}} = 0\)

\( \Leftrightarrow \frac{{2{a^2} - 3xa - 12xa + 2{a^2}}}{{18}} = 0\)

4a2 – 15xa = 0

a(4a – 15x) = 0

4a – 15x = 0 (do a > 0).

\(x = \frac{{4a}}{{15}}\).

Vậy \(x = \frac{{4a}}{{15}}\) thì đường thẳng AN vuông góc với đường thẳng PM.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP