Câu hỏi:
13/07/2024 19,020Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Quảng cáo
Trả lời:
Do BN = \(\frac{a}{3}\) và BC = a nên BN = \(\frac{1}{3}\)BC.
Mà N thuộc cạnh BC nên vectơ \(\overrightarrow {BN} \) và \(\overrightarrow {BC} \) cùng hướng. Do đó, \(\overrightarrow {BN} = \frac{1}{3}\overrightarrow {BC} \).
Ta có \(\overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {BN} = \overrightarrow {AB} + \frac{1}{3}(\overrightarrow {AC} - \overrightarrow {AB} ) = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
Lại có: CM = \(\frac{{2a}}{3}\), mà AC = a và M thuộc cạnh AC nên AM = \(a - \frac{{2a}}{3} = \frac{a}{3} = \frac{1}{3}AC\).
Suy ra \(\overrightarrow {AM} = \frac{1}{3}\overrightarrow {AC} \).
Và AP = x (0 < x < a), AB = a, P thuộc cạnh AB nên AP = \(\frac{x}{a}AB\).
Suy ra \(\overrightarrow {AP} = \frac{x}{a}\overrightarrow {AB} \).
Do đó, ta có: \(\overrightarrow {PM} = \overrightarrow {AM} - \overrightarrow {AP} = \frac{1}{3}\overrightarrow {AC} - \frac{x}{a}\overrightarrow {AB} \).
Khi đó, \(AN \bot PM \Leftrightarrow \overrightarrow {AN} \cdot \overrightarrow {PM} = 0\)
\( \Leftrightarrow \left( {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right) \cdot \left( {\frac{1}{3}\overrightarrow {AC} - \frac{x}{a}\overrightarrow {AB} } \right) = 0\)
\( \Leftrightarrow \frac{2}{9}\overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{2x}}{{3a}}{\overrightarrow {AB} ^2} - \frac{x}{{3a}}\overrightarrow {AB} \cdot \overrightarrow {AC} + \frac{1}{9}{\overrightarrow {AC} ^2} = 0\)
\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right)\overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{2x}}{{3a}}.{a^2} + \frac{1}{9}.{a^2} = 0\) (do AB = AC = a)
\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right) \cdot \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot cos\left( {\overrightarrow {AB} ,\,\,\overrightarrow {AC} } \right) - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)
\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right) \cdot a \cdot a \cdot cos60^\circ - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)
\( \Leftrightarrow \frac{{2a - 3x}}{{9a}} \cdot \frac{{{a^2}}}{2} - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)
\( \Leftrightarrow \frac{{\left( {2a - 3x} \right)a}}{{18}} - \frac{{12xa}}{{18}} + \frac{{2{a^2}}}{{18}} = 0\)
\( \Leftrightarrow \frac{{2{a^2} - 3xa - 12xa + 2{a^2}}}{{18}} = 0\)
⇔ 4a2 – 15xa = 0
⇔ a(4a – 15x) = 0
⇔ 4a – 15x = 0 (do a > 0).
⇔ \(x = \frac{{4a}}{{15}}\).
Vậy \(x = \frac{{4a}}{{15}}\) thì đường thẳng AN vuông góc với đường thẳng PM.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).
Câu 2:
Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = - 2\overrightarrow i + \overrightarrow j \). Tìm tọa độ của vectơ \(\overrightarrow u \).
Câu 5:
Cho các tập hợp A = {x ∈ ℝ| – 5 ≤ x < 1} và B = {x ∈ ℝ| – 3 < x ≤ 3}. Tìm tập hợp A ∪ B.
Câu 6:
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) khác vectơ-không. Khẳng định nào sau đây là đúng?
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận