Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Quảng cáo
Trả lời:

Do BN = \(\frac{a}{3}\) và BC = a nên BN = \(\frac{1}{3}\)BC.
Mà N thuộc cạnh BC nên vectơ \(\overrightarrow {BN} \) và \(\overrightarrow {BC} \) cùng hướng. Do đó, \(\overrightarrow {BN} = \frac{1}{3}\overrightarrow {BC} \).
Ta có \(\overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {BN} = \overrightarrow {AB} + \frac{1}{3}(\overrightarrow {AC} - \overrightarrow {AB} ) = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
Lại có: CM = \(\frac{{2a}}{3}\), mà AC = a và M thuộc cạnh AC nên AM = \(a - \frac{{2a}}{3} = \frac{a}{3} = \frac{1}{3}AC\).
Suy ra \(\overrightarrow {AM} = \frac{1}{3}\overrightarrow {AC} \).
Và AP = x (0 < x < a), AB = a, P thuộc cạnh AB nên AP = \(\frac{x}{a}AB\).
Suy ra \(\overrightarrow {AP} = \frac{x}{a}\overrightarrow {AB} \).
Do đó, ta có: \(\overrightarrow {PM} = \overrightarrow {AM} - \overrightarrow {AP} = \frac{1}{3}\overrightarrow {AC} - \frac{x}{a}\overrightarrow {AB} \).
Khi đó, \(AN \bot PM \Leftrightarrow \overrightarrow {AN} \cdot \overrightarrow {PM} = 0\)
\( \Leftrightarrow \left( {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right) \cdot \left( {\frac{1}{3}\overrightarrow {AC} - \frac{x}{a}\overrightarrow {AB} } \right) = 0\)
\( \Leftrightarrow \frac{2}{9}\overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{2x}}{{3a}}{\overrightarrow {AB} ^2} - \frac{x}{{3a}}\overrightarrow {AB} \cdot \overrightarrow {AC} + \frac{1}{9}{\overrightarrow {AC} ^2} = 0\)
\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right)\overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{2x}}{{3a}}.{a^2} + \frac{1}{9}.{a^2} = 0\) (do AB = AC = a)
\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right) \cdot \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot cos\left( {\overrightarrow {AB} ,\,\,\overrightarrow {AC} } \right) - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)
\( \Leftrightarrow \left( {\frac{2}{9} - \frac{x}{{3a}}} \right) \cdot a \cdot a \cdot cos60^\circ - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)
\( \Leftrightarrow \frac{{2a - 3x}}{{9a}} \cdot \frac{{{a^2}}}{2} - \frac{{2xa}}{3} + \frac{{{a^2}}}{9} = 0\)
\( \Leftrightarrow \frac{{\left( {2a - 3x} \right)a}}{{18}} - \frac{{12xa}}{{18}} + \frac{{2{a^2}}}{{18}} = 0\)
\( \Leftrightarrow \frac{{2{a^2} - 3xa - 12xa + 2{a^2}}}{{18}} = 0\)
⇔ 4a2 – 15xa = 0
⇔ a(4a – 15x) = 0
⇔ 4a – 15x = 0 (do a > 0).
⇔ \(x = \frac{{4a}}{{15}}\).
Vậy \(x = \frac{{4a}}{{15}}\) thì đường thẳng AN vuông góc với đường thẳng PM.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Suy ra, \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\).
Theo định lí Pythagore trong tam giác vuông ABD, ta có:
BD2 = AB2 + AD2 = 42 + 32 = 25, suy ra BD = 5 (cm).
Vậy \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\)= 5 cm.
Lời giải
Đáp án đúng là: C
Vì G là trọng tâm của tam giác ABC nên ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).
Với điểm M bất kỳ, theo quy tắc ba điểm ta có:
\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)\)
\( = 3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} + \overrightarrow 0 = 3\overrightarrow {MG} \).
Vậy \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.