Câu hỏi:
04/11/2022 632
Cho mẫu số liệu sau:
12; 5; 8; 11; 6; 20; 22.
Tính khoảng biến thiên của mẫu số liệu trên.
Cho mẫu số liệu sau:
12; 5; 8; 11; 6; 20; 22.
Tính khoảng biến thiên của mẫu số liệu trên.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Sắp xếp mẫu số liệu trên theo thứ tự không giảm ta có:
5; 6; 8; 11; 12; 20; 22.
+ Giá trị nhỏ nhất của mẫu số liệu trên là 5.
+ Giá trị lớn nhất của mẫu số liệu trên là 22.
Ta có: R = 22 – 5 = 17.
Do đó khoảng biến thiên của mẫu số liệu trên là 17.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Suy ra, \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\).
Theo định lí Pythagore trong tam giác vuông ABD, ta có:
BD2 = AB2 + AD2 = 42 + 32 = 25, suy ra BD = 5 (cm).
Vậy \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\)= 5 cm.
Lời giải
Đáp án đúng là: C
Vì G là trọng tâm của tam giác ABC nên ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).
Với điểm M bất kỳ, theo quy tắc ba điểm ta có:
\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)\)
\( = 3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} + \overrightarrow 0 = 3\overrightarrow {MG} \).
Vậy \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.