Câu hỏi:

13/07/2024 781

Hãy phân tích các số sau ra thừa số nguyên tố:

145; 310; 2 020.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+)

Hãy phân tích các số sau ra thừa số nguyên tố: 145; 310; 2 020

Vậy 145 = 5. 29

+)

Hãy phân tích các số sau ra thừa số nguyên tố: 145; 310; 2 020

Vậy 310 = 2. 5. 31 

+)

Hãy phân tích các số sau ra thừa số nguyên tố: 145; 310; 2 020

Vậy 2 020 = 22.5.101

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Kiểm tra xem trong các số sau, số nào là số nguyên tố, số nào là hợp số bằng cách dùng dấu hiệu chia hết hoặc tra bảng số nguyên tố:

829; 971; 9 891; 12 344; 32 015.

Xem đáp án » 13/07/2024 3,285

Câu 2:

Tìm chữ số a để:

a) Tìm chữ số a để: a) 49a là số nguyên tố là số nguyên tố;

b) Tìm chữ số a để: a) 49a là số nguyên tố là hợp số.

Xem đáp án » 13/07/2024 2,406

Câu 3:

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ cột sau đây:

a)

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

b)

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Xem đáp án » 13/07/2024 2,046

Câu 4:

Tổng sau là số nguyên tố hay hợp số?

a) 11. 12. 13 + 14. 15;

b) 11. 13. 15 + 17. 19. 23

Xem đáp án » 13/07/2024 1,839

Câu 5:

Cho 6 hình vuông đơn vị, ta có hai cách xếp chúng để tạo thành các hình chữ nhật như hình dưới đây:

Cho 6 hình vuông đơn vị, ta có hai cách xếp chúng để tạo thành các hình

a) Nếu cho 7 hình vuông đơn vị thì ta có mấy cách xếp chúng thành các hình chữ nhật?

b) Nếu cho 12 hình vuông đơn vị thì ta có mấy cách xếp chúng thành các hình chữ nhật?

c) Cho n hình vuông đơn vị (n > 1). Với những số n nào thì ta chỉ có một cách xếp chúng thành hình chữ nhật? Với những số n nào thì ta có nhiều hơn một cách xếp chúng thành hình chữ nhật?

Xem đáp án » 13/07/2024 1,274

Câu 6:

a) Năm 1742, nhà toán học người Đức Goldbach gửi cho nhà toán học Thụy Sĩ Euler một bức thư viết rằng: Mọi số tự nhiên lớn hơn 5 đều viết được thành tổng của ba số nguyên tố, ví dụ 7 = 2 + 2 + 3; 8 = 2 + 3 + 3.

Em hãy viết các số 17; 20 thành tổng của ba số nguyên tố.

b) Trong thư trả lời Goldbach, Euler nói rằng: Mọi số chẵn lớn hơn 2 đều viết được dưới dạng tổng của hai số nguyên tố.

Em hãy viết các số 36; 50 thành tổng của hai số nguyên tố.

Cả hai bài toán Goldbach và Euler nêu ra đến nay vẫn chưa có lời giải.

Xem đáp án » 13/07/2024 866

Câu 7:

Hãy phân tích các số A, B sau đây ra thừa số nguyên tố

A = 62.93;   B = 3.82.25

Xem đáp án » 13/07/2024 801

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store