Câu hỏi:

10/12/2022 12,526

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a2, cạnh bên SA= 2a. Côsin góc giữa hai mặt phẳng (SCD) và (SAC) bằng

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a can bậc hai 2 cạnh bên SA= 2a (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C.

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a can bậc hai 2 cạnh bên SA= 2a (ảnh 2)

Gọi I là trung điểm CD do S.ABCD là hình chóp tứ giác đều nên dễ thấy OICD,SICD.

Ta có ODAC,ODSOODSAC. Dựng OHSCDHSC (định lý ba đường vuông góc). Do đó, góc giữa hai mặt phẳng (SCD) và (SAC) là góc DHO^.

Ta có: IC=OI=a22,OC=a2.22=a,SC=2aSI=SC2IC2=4a2a22=a142.

Xét tam giác SCD ta có: SΔSCD=CD.SI2=DH.SC2a2.a1422=DH.2a2DH=a72.

Xét tam giác vuông SOC ta có:

SO=SC2OC2=4a2a2=a3;1SO2+1CO2=1OH213a2+1a2=1OH2OH=a32.

Xét tam giác vuông DOH ta có: cosDHO^=OHDH=a32a72=37=217.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn C.

Ta có: fx=ax3+bx2+cx+df'x=3ax2+2bx+c.

Từ đồ thị ta thấy:

Tại x=±1f'x=0 và đồ thị hàm số đi qua các điểm: 1;1;0;1 và 1;3.

Từ đó ta có hệ phương trình:

y'1=0y'1=0y1=1y0=1a=1b=0c=3d=1.

Suy ra: T=ab+c+d=1.

Câu 2

Lời giải

Chọn D.

Ta có f'x=0x=2

Dấu f'(x):

Cho hàm số y= f(x) có đạo hàm f'(x)= (x^2+1)(x-2), với mọi x thuộc R Mệnh đề nào dưới đây đúng?  (ảnh 1)

Vậy hàm số nghịch biến trên khoảng ;2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP