Viết phương trình tổng quát của đường thẳng đi qua N(1; 1) và vuông góc với đường thẳng 2x + 3y + 7 = 0. 
                                    
                                                                                                                        Viết phương trình tổng quát của đường thẳng đi qua N(1; 1) và vuông góc với đường thẳng 2x + 3y + 7 = 0.
Câu hỏi trong đề: Đề thi giữa học kì 2 Toán 7 KNTT có đáp án !!
Quảng cáo
Trả lời:
Gọi đường thẳng cần lập là a.
Đường thẳng a vuông góc với đường thẳng 2x + 3y + 7 nên lấy vectơ pháp tuyến \(\overrightarrow n = \left( {2;\,\,3} \right)\) của đường thẳng 2x + 3y + 7 là vectơ chỉ phương của đường thẳng a. Khi đó, một vectơ pháp tuyến của đường thẳng a là \(\overrightarrow {{n_a}} = \left( {3;\,\, - 2} \right)\).
Đường thẳng a đi qua điểm N(1; 1) và có vectơ pháp tuyến là \(\overrightarrow {{n_a}} = \left( {3;\,\, - 2} \right)\) nên có phương trình là 3(x – 1) – 2(y – 1) = 0 hay 3x – 2y – 1 = 0.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(2\sqrt {13} \);
B. \(\frac{{28}}{{\sqrt {13} }}\);
C. 26;
D. \(\frac{{\sqrt {13} }}{2}\).
Lời giải
Gọi đường thẳng cần lập là d.
Vectơ pháp tuyến của đường thẳng 3x + 5y – 2 = 0 cũng là một vectơ pháp tuyến của đường thẳng d nên phương trình đường thẳng d có dạng 3x + 5y + c = 0 (c ≠ – 2).
Vì d đi qua điểm M(– 1; – 4) nên 3 . (– 1) + 5 . (– 4) + c = 0. Suy ra c = 23 (t/m).
Vậy phương trình tổng quát của đường thẳng d là 3x + 5y + 23 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. f(x) < 0 khi và chỉ khi x ∈ (1; 3);
B. f(x) ≤ 0 khi và chỉ khi x ∈ (– ∞; 1] ∪ [3; + ∞);
C. f(x) > 0 khi và chỉ khi x ∈ (1; 3);
D. f(x) ≥ 0 khi và chỉ khi x ∈ [1; 3].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - t\end{array} \right.\);
B. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 + t\end{array} \right.\);
C. \(\left\{ \begin{array}{l}x = 2 + 2t\\y = 1 - t\end{array} \right.\);
D. \(\left\{ \begin{array}{l}x = 1 + t\\y = 1 + 2t\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.