Câu hỏi:

19/12/2022 4,071 Lưu

Cho tam giác ABC với hai đường trung tuyến BM và CN cắt nhau tại G. Kết luận nào sau đây là sai?

A. \(CG = \frac{2}{3}CN\);      

B. \(GN = \frac{1}{2}GC\);      

C. \(GM = \frac{2}{3}BM\);     

D. \(GB = 2GM\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho tam giác ABC với hai đường trung tuyến BM và CN cắt nhau tại G. Kết luận nào  (ảnh 1)

Cho DABC có hai đường trung tuyến BM và CN cắt nhau tại G nên G là trọng tâm của DABC.

Khi đó \(CG = \frac{2}{3}CN\); \(GN = \frac{1}{2}GC\); \(GM = \frac{1}{3}BM\); \(GB = 2GM\). Do đó C sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

M(x) = P(x) + Q(x).

M(x) = (5x5 – 4x2 – 7x + 15) + (–5x5 + 4x2 + 3x – 7)

         = 5x5 – 4x2 – 7x + 15 – 5x5 + 4x2 + 3x – 7

         = –4x + 8.

Ta có M(x) = 0

Suy ra –4x + 8 = 0

               x = 2.

Vậy đa thức M(x) có nghiệm là x = 2.

Lời giải

Ta thực hiện đặt tính chia đa thức như sau:

Tìm số nguyên x để đa thức A(x) = 2x^3 - 3x^2 + 2x + 2 chia hết cho đa thức B(x) = x^2 (ảnh 1)

Để đa thức A(x) = 2x3 – 3x2 + 2x + 2 chia hết cho đa thức B(x) = x2 + 1 thì 5 ⁝ (x2 + 1)

Hay (x2 + 1) Ư(5) = {–1; 1; –5; 5}.

Mà x2 + 1 ≥ 1 với mọi số nguyên x.

Do đó (x2 + 1) {1; 5}.

• Với x2 + 1 = 1 suy ra x = 0 (thỏa mãn x là số nguyên)

• Với x2 + 1 = 5

Suy ra x2 = 4

Do đó x = 2 (thỏa mãn) hoặc x = –2 (thỏa mãn)

Vậy có 3 giá trị của x thỏa mãn đề bài là x {0; –2; 2}.

Câu 4

A. AB + BC < AC;

B. AC – BC > AB;

C. AB + BC > AC;

D. AB + BC = AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Biến cố chắc chắn luôn xảy ra;

B. Biến cố không thể không bao giờ xảy ra;

C. Xác suất của biến cố ngẫu nhiên bằng 1;

D. Biến cố có khả năng xảy ra cao hơn sẽ có xác suất lớn hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP