Câu hỏi:
12/07/2024 8,164Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giải:
Thực hiện phép chia đa thức như sau:
Khi đó ta có \(\frac{{3{x^3} + 10{x^2} - 5}}{{3x + 1}} = {x^2} + 3x - 1 + \frac{{ - 4}}{{3x + 1}}\).
Để đa thức 3x3 + 10x2 – 5 chia hết cho đa thức 3x + 1 thì \(\frac{{ - 4}}{{3x + 1}}\) phải là số nguyên.
Suy ra – 4 ⋮ (3x + 1) hay (3x + 1) ∈ Ư(– 4) = {– 4; – 1; 1; 4}.
Ta có bảng sau:
3x + 1 |
– 4 |
– 1 |
1 |
4 |
x (nguyên) |
\( - \frac{5}{3}\) (loại) |
\( - \frac{2}{3}\) (loại) |
0 (chọn) |
1 (chọn) |
Khi đó với n ∈ {0; 1} thì đa thức 3x3 + 10x2 – 5 chia hết cho đa thức 3x + 1.
Vậy có 2 giá trị x thỏa mãn yêu cầu đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G.
a) Chứng minh ∆ADB và ∆AEC.
b) Chứng minh DGBC là tam giác cân.
c) Chứng minh \(GD + GE > \frac{1}{2}BC\).
Câu 2:
Cho hai đa thức: P(x) = x2(2x3 – 3) + 5x4 – 7x3 + x2 – x;
Q(x) = 3x4 – 2x2(x3 – 3) – 2x3 + x2 – 1.
a) Thu gọn và sắp xếp mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Tìm đa thức R(x) biết P(x) = Q(x) + R(x). Xác định bậc, hệ số cao nhất và hệ số tự do của đa thức R(x).
c) Chứng tỏ rằng x = 0 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x).
Câu 3:
Gieo ngẫu nhiên con xúc xắc 6 mặt cân đối một lần. Xét các biến cố:
A: “Số chấm xuất hiện trên con xúc xắc là số có một chữ số”;
B: “Số chấm xuất hiện trên con xúc xắc là số chẵn”;
C: “Số chấm xuất hiện trên con xúc xắc chia hết cho 9”.
a) Trong các biến cố trên, biến cố nào là biến cố chắc chắn, biến cố không thể, biến cố ngẫu nhiên?
b) Tính xác suất của biến cố ngẫu nhiên được xác định ở câu a.
Câu 4:
Câu 6:
về câu hỏi!