Câu hỏi:
28/12/2022 7,483
Trong mặt phẳng tọa độ Oxy cho tam giác ABC. Biết A(1; 3); B(2; 4) và C(5; 3). Tính góc giữa 2 vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có: A(1; 3); B(2; 4) nên \(\overrightarrow {AB} = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right)\);
A(1; 3); C(5; 3) nên \(\overrightarrow {AC} = \left( {5 - 1;3 - 3} \right) = \left( {4;0} \right)\).
Suy ra \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{1.4 + 1.0}}{{\sqrt {{1^2} + {1^2}} .\sqrt {{4^2} + {0^2}} }} = \frac{4}{{4\sqrt 2 }} = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\).
Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = 45^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Tam thức bậc hai có dạng f(x) = ax2 + bx + c, với a ≠ 0.
Ta thấy chỉ có đa thức ở phương án B có dạng f(x) = ax2 + bx + c với a = –1, b = 2 và c = –10.
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Ta có (C): x2 + y2 – 2x + 2y – 2 = 0
⇔ (x – 1)2 + (y + 1)2 = 4
Khi đó tâm của đường tròn (C) là I(1; – 1) và R = 2.
a) Vì đường thẳng (∆) song song với (d) nên (∆) có dạng 4x – 3y + c = 0 .
Ta có đường thẳng (∆) tiếp xúc với (C) nên:
d(I, ∆) = \(\frac{{\left| {4.1 - 3.\left( { - 1} \right) + c} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\left| {c + 7} \right|}}{5} = 2\)
\( \Leftrightarrow \left| {c + 7} \right| = 10\)
\( \Leftrightarrow \left[ \begin{array}{l}c + 7 = 10\\c + 7 = - 10\end{array} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.