Câu hỏi:

12/07/2024 2,519

Cho đường tròn tâm O đường kính AB, dây CD vuông góc với AB tại H. Trên tia đối của tia CD, lấy một điểm M ở ngoài đường tròn (O). Kẻ  MB cắt đường tròn tại điểm E, AE cắt CD tại điểm F.

a. Chứng minh tứ giác BEFH nội tiếp một đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn tâm O đường kính AB, dây CD vuông góc với AB tại H. Trên tia đối của tia CD, lấy một điểm M ở ngoài đường tròn (O).  (ảnh 1)
a) Xét (O) có: AEB^=900 (góc nội tiếp chắn nửa đường tròn) hay 
Mặt khác: ABCD  (gt) nên BHF^=900
Xét tứ giác BEFH có:
FEB^+BHF^=900+900=1800FEB^,  BHF^ là hai góc ở vị trí đối diện nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có Δ'=(3)21.(2m3)=92m+3=122m

Phương trình (1) có hai nghiệm x1,x2 khi và chỉ khi:
122m02m12m6​​​   
Theo hệ thức Vi – ét, ta có: x1+x2=6x1.x2=2m3                  (3)
Theo đề bài, ta có: x12x2+x1x22=24x1x2(x1+x2)=24     (4)
Thay (3) vào (4) , ta được:
6(2m3)=242m3=42m=7m=72 (thoả mãn ĐK m6)
Vậy m=72 là giá trị cần tìm
 

Lời giải

c) Xét ADC có: AH vừa là đường cao, vừa là đường trung tuyến => ADC cân tại A => AC = AD => AC=AD  => sđAC  = sđAD
Xét (O) có: DEA^=CEA^ (2 góc nội tiếp cùng chắn hai cung bằng nhau)
=> EA là tia phân giác của DEC^.
Xét ΔCDE
Vì EA là tia phân giác của DEC^ (cm trên) nên EF là đường phân giác trong của tam giác CDE.    (8)
Suy ra: FCFD=ECED (9)
AEB^=900 (cm phần a) nên AEMB (10)
Từ (8) và (10) , suy ra: EM là đường phân giác ngoài của tam giác CDE.
Suy ra: MCMD=ECED (11)
Từ (9) và (11) , suy ra: FCFD=MCMD  => FC.MD=FD.MC(đpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP