Câu hỏi:

13/07/2024 5,436 Lưu

Bác Thanh vay ngân hàng 10 000 000 đồng để làm kinh tế gia đình trong thời hạn một năm. Lẽ ra cuối năm Bác phải trả cả vốn lẫn lãi nhưng đến cuối năm, Bác đã được ngân hàng cho kéo dài thời hạn thêm một năm nữa, số lãi của năm đầu được gộp vào với vốn để tính lãi năm sau và lãi suất vẫn như cũ. Hết hai năm bác phải trả tất cả là 11 664 000 đồng. Hỏi lãi suất ngân hàng cho vay là bao nhiêu phần trăm trong một năm?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi lãi suất cho vay là X (% ; X > 0)

Tiền lãi sau một năm là: 10 000 000. X % = 100 000. X (đồng)

Sau một năm cả vốn lẫn lãi là: (10 000 000 + 100 000. X) (đồng)

Tiền lãi riêng năm thứ hai phải chịu là : (10 000 000 + 100 000. X).X % = 100 000.X + 1000.X2

Số tiền sau 2 năm bác Thanh phải trả cho ngân hàng là :

(10 000 000 + 100 000 X) + 100 000 X + 1000.X2 (đồng)

Theo đầu bài ta có phương trình:

10 000.000 + 200 000 X + 1 000X2 = 11664000

hay X2 + 200 X – 1664 = 0

Giải phương trình ta được:

X = 8 (nhận) hay X = - 208 (loại)

Vậy lãi suất cho vay là 8 % một năm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c) Tứ giác CEHD nội tiếp đường tròn đường kính CH

HDE^=HCE^ ( 2 góc nội tiếp chắn cùng cung HE)

Tứ giác BCEF nội tiếp đường tròn đường kính BC

FCE^=FBE^ ( 2 góc nội tiếp chắn cùng cung FE)

Tứ giác BDHF nội tiếp đường tròn đường kính BH

FBE^=HDF^ ( 2 góc nội tiếp chắn cùng cung FH)

Vậy HDE^=HDF^

Suy ra DH là đường phân giác của góc EDF trong tam giác DEF.

Chứng minh tương tự ta có:

EH là đường phân giác của góc DEF trong tam giác DEF.

Vậy H là tâm của đường tròn nội tiếp của tam giác DEF.

Lời giải

Cho tam giác ABC có các góc đều nhọn và có ba đường cao là AD, BE, CF cắt nhau tại H. a) Chứng minh các tứ giác BCEF, AEHF là các tứ giác nội tiếp (ảnh 1)

a) Ta có: BEC^=900, BFC^=900  (Vì BE, CF là đường cao của tam giác ABC)

Vậy tứ giác BCEF nội tiếp được đường tròn đường kính BC

    Ta có: AEH^=900, AFH^=900 (Vì BE, CF là đường cao của tam giác ABC)

Vậy tứ giác AEHF nội tiếp được đường tròn đường kính AH

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP