Câu hỏi:
25/02/2023 976
Từ các số của tập A = {1; 2; 3; 4; 5; 6; 7} lập được bao nhiêu số tự nhiên gồm năm chữ số đôi một khác nhau, đồng thời hai chữ số 2 và 3 luôn đứng cạnh nhau
Từ các số của tập A = {1; 2; 3; 4; 5; 6; 7} lập được bao nhiêu số tự nhiên gồm năm chữ số đôi một khác nhau, đồng thời hai chữ số 2 và 3 luôn đứng cạnh nhau
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đặt x = 23. Số các số cần lập có dạng với a; b; c; d ∈{1; x; 4; 5; 6; 7} có số như vậy
Mặt khác khi hoán vị hai số 2 và 3 ta được thêm một số thỏa yêu cầu bài toán.
Vậy có 360.2 = 720 số thỏa yêu cầu bài toán.
Chọn A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi số học sinh giỏi cả ba môn của lớp 10 A là x ( x > 0, x ∈ N )
Mà số học sinh lớp 10A là 45 học sinh .
⇒ x + 5 + x + 4 + x + 3 + 11 - x + 9 - x + 8 - x + x = 45
⇒ 40 + x = 45
⇒ x = 5 (TM)
Vậy có 5 bạn giỏi cả ba môn toán lý và hóa.
Lời giải
Gọi số xe loại lớn, nhỏ cần thuê lần lượt là x, y xe, (x, y ≥ 0, x, y ∈ Z)
→ T = 4x + 2y (triệu đồng) là số tiền thuê xe.
Suy ra để số tiền thuê xe nhỏ nhất thì T = 4x + 2y nhỏ nhất
Theo bài ta có:
Vẽ miền nghiệm của hệ trên, thấy các điểm giao nhau là:
A (12, 10), B (12, 0), C (11.250), D (5,10),
Suy ra:
TA = 68, TB = 48, TC = 45, TD = 40
→TD nhỏ nhất vì x, y ∈ Z
→Cần thuê 5 xe lớn và 10 xe nhỏ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.