Cho tứ giác ABCD có M , N , P , Q lần lượt là trung điểm của AB , BC , CD , DA . Chứng minh tứ giác MNPQ là hình bình hành , IMPN là hình bình hành
Cho tứ giác ABCD có M , N , P , Q lần lượt là trung điểm của AB , BC , CD , DA . Chứng minh tứ giác MNPQ là hình bình hành , IMPN là hình bình hành
Quảng cáo
Trả lời:

Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm BC
→ MN là đường trung bình
→ MN//AC và (1)
Xét tam giác ADC có:
P là trung điểm DC
Q là trung điểm AD
→ PQ là đường trung bình
→ PQ//AC và (2)
(1),(2)
→ MNPQ là hình bình hành
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi số học sinh giỏi cả ba môn của lớp 10 A là x ( x > 0, x ∈ N )
Mà số học sinh lớp 10A là 45 học sinh .
⇒ x + 5 + x + 4 + x + 3 + 11 - x + 9 - x + 8 - x + x = 45
⇒ 40 + x = 45
⇒ x = 5 (TM)
Vậy có 5 bạn giỏi cả ba môn toán lý và hóa.
Lời giải
Gọi số xe loại lớn, nhỏ cần thuê lần lượt là x, y xe, (x, y ≥ 0, x, y ∈ Z)
→ T = 4x + 2y (triệu đồng) là số tiền thuê xe.
Suy ra để số tiền thuê xe nhỏ nhất thì T = 4x + 2y nhỏ nhất
Theo bài ta có:
Vẽ miền nghiệm của hệ trên, thấy các điểm giao nhau là:
A (12, 10), B (12, 0), C (11.250), D (5,10),
Suy ra:
TA = 68, TB = 48, TC = 45, TD = 40
→TD nhỏ nhất vì x, y ∈ Z
→Cần thuê 5 xe lớn và 10 xe nhỏ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.