Câu hỏi:

25/02/2023 639

Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F

a. Chứng minh tứ giác MECF là hình chữ nhật và EF là tiếp tuyến chung của (I) và (K)

b. Cho AB = 4cm, xác định vị trí điểm C trên AB để diện tích tứ giác IFEK là lớn nhất.

c. Khi C khác O, đường tròn ngoại tiếp hình chữ nhật MECF cắt đường trong (O) tại P (khác M), đường thẳng PM cắt đường thẳng AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN.

d. Chứng minh 3 điểm: N, E, F thẳng hàng

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta thấy MEC và MFC là các tam giác vuông chung cạnh huyền MC nên MECF nội tiếp đường tròn đường kính MC.

Dễ thấy MECF là hình chữ nhật (Tứ giác có 3 góc vuông) nên CEF^=ECM^

Lại có IEC^=ICE^IEF^=MCA^=90o

Hoàn toàn tương tự FE là tiếp tuyến đường tròn (K). Vậy EF là tiếp tuyến chung của hai đường tròn.

b) MECF là hình chữ nhật nên EF = MC.

Do EI và FK cùng vuông góc với EF nên IEFK là hình thang vuông.

SIEFK=EI+FK.EF2=IC+CK.MC2=IK.MC2=AB2.MC2=MCMH với H là điểm chính giữa cung AB.

Vậy để diện tích IEFK lớn nhất thì C nằm chính giữa cung AB. Khi đó 

SIEFK=2cm2

c) Ta thấy MPF^=MCF^ (Hai góc nội tiếp cùng chắn cung MF) =MBN^ (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung CF)

ΔMPF ~ ΔMBNg - g

d) Do ΔMPF ~ ΔMBNMFP^ = MNB^

MFP ^= MEP^PNA^ = MEP^ hay NPEA là tứ giác nội tiếp.

Tương tự PFBN cũng là tứ giác nội tiếp.

Vậy thì ta có: PNE^ = PAE^ = PBM^ = PNF^

Hay N, E, F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn Lý, 20 em học giỏi môn Hóa, 11 em học giỏi cả môn Toán và môn Lý, 8 em học giỏi cả môn Lý và môn Hóa, 9 em học giỏi cả môn Toán và môn Hóa. Hỏi lớp 10A có bao nhiêu bạn học giỏi cả ba môn Toán, Lý, Hóa, biết rằng mỗi học sinh trong lớp học giỏi ít nhất một trong 3 môn Toán, Lý, Hóa?

Xem đáp án » 13/07/2024 99,107

Câu 2:

Một trang trại cân thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất?

Xem đáp án » 12/07/2024 34,178

Câu 3:

Cho tam giác ABC vuông tại A, đường cao AH. Biết BC = 8cm, BH = 2cm.

a) Tính độ dài các đoạn thẳng AB, AC, AH.

b) Trên cạnh AC lấy điểm K (K ≠ A, K ≠ C), gọi D là hình chiếu của A trên BK. Chứng minh rằng: BD.BK = BH.BC.

c) Chứng minh rằng: SBHD=14SBKC.cos2ABD^.

Xem đáp án » 12/07/2024 17,813

Câu 4:

Cho hình vuông ABCD. O là giao điểm 2 đường chéo AC và BD. Gọi M, N lần lượt là trung điểm của OB, CD. Chứng minh góc AMN = 90°

Cho hình vuông ABCD. O là giao điểm 2 đường chéo AC và BD. Gọi M, N lần lượt là trung điểm của OB, CD.
a) Chứng minh góc AMN = 90°
b) A, M, N, D cùng thuộc 1 đường tròn
c) So sánh AN với MD

Xem đáp án » 13/07/2024 13,785

Câu 5:

Cho tam giác ABC vuông góc tại A,có AB = AC.Gọi K là trung điểm của cạnh BC

a) Chứng minh tam giác AKB = tam giác AKC và AK vuông góc với BC.

b) Từ C kẻ đường thẳng vuông góc với BC, cắt AB tại E. Chứng minh EC song song với AK.

c) Chứng minh CE = CB.

Xem đáp án » 12/07/2024 8,191

Câu 6:

Hai xạ thủ A và B cùng bắn vào bia xác suất để xạ thủ bắn trúng là 0,7 và xác suất để xạ thủ b bán kính là 0,8 tính xác suất để có đúng một xạ thủ bắn trúng bia

Xem đáp án » 12/07/2024 6,187

Câu 7:

Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4cm và HC = 6cm.
a) Tính độ dài các đoạn AH, AB, AC
b) Gọi M là trung điểm của AC. Tính số đó góc AMB (làm tròn đến độ)
c) Kẻ AK vuông góc BM (K thuộc BM). Chứng minh: BKBH=BCBM

Xem đáp án » 12/07/2024 5,906

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store