Câu hỏi:

25/02/2023 1,131

Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F

a. Chứng minh tứ giác MECF là hình chữ nhật và EF là tiếp tuyến chung của (I) và (K)

b. Cho AB = 4cm, xác định vị trí điểm C trên AB để diện tích tứ giác IFEK là lớn nhất.

c. Khi C khác O, đường tròn ngoại tiếp hình chữ nhật MECF cắt đường trong (O) tại P (khác M), đường thẳng PM cắt đường thẳng AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN.

d. Chứng minh 3 điểm: N, E, F thẳng hàng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta thấy MEC và MFC là các tam giác vuông chung cạnh huyền MC nên MECF nội tiếp đường tròn đường kính MC.

Dễ thấy MECF là hình chữ nhật (Tứ giác có 3 góc vuông) nên CEF^=ECM^

Lại có IEC^=ICE^IEF^=MCA^=90o

Hoàn toàn tương tự FE là tiếp tuyến đường tròn (K). Vậy EF là tiếp tuyến chung của hai đường tròn.

b) MECF là hình chữ nhật nên EF = MC.

Do EI và FK cùng vuông góc với EF nên IEFK là hình thang vuông.

SIEFK=EI+FK.EF2=IC+CK.MC2=IK.MC2=AB2.MC2=MCMH với H là điểm chính giữa cung AB.

Vậy để diện tích IEFK lớn nhất thì C nằm chính giữa cung AB. Khi đó 

SIEFK=2cm2

c) Ta thấy MPF^=MCF^ (Hai góc nội tiếp cùng chắn cung MF) =MBN^ (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung CF)

ΔMPF ~ ΔMBNg - g

d) Do ΔMPF ~ ΔMBNMFP^ = MNB^

MFP ^= MEP^PNA^ = MEP^ hay NPEA là tứ giác nội tiếp.

Tương tự PFBN cũng là tứ giác nội tiếp.

Vậy thì ta có: PNE^ = PAE^ = PBM^ = PNF^

Hay N, E, F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn (ảnh 1)

Gọi số học sinh giỏi cả ba môn của lớp 10 A là x ( x > 0, x N )

Mà số học sinh lớp 10A là 45 học sinh .

x + 5 + x + 4 + x + 3 + 11 - x + 9 - x + 8 - x + x = 45

40 + x = 45

x = 5 (TM)

Vậy có 5 bạn giỏi cả ba môn toán lý và hóa.

Lời giải

Gọi số xe loại lớn, nhỏ cần thuê lần lượt là x, y xe, (x, y ≥ 0, x, y Z)

→ T = 4x + 2y (triệu đồng) là số tiền thuê xe.

Suy ra để số tiền thuê xe nhỏ nhất thì T = 4x + 2y nhỏ nhất

Theo bài ta có:

0x120y1040x+30y4505x+y35

 

Vẽ miền nghiệm của hệ trên, thấy các điểm giao nhau là:

A (12, 10), B (12, 0), C (11.250), D (5,10), E6011,8511

Suy ra:

TA = 68, TB = 48, TC = 45, TD = 40

→TD nhỏ nhất vì x, y Z

→Cần thuê 5 xe lớn và 10 xe nhỏ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay