Câu hỏi:
12/07/2024 5,739Cho hàm số y = x2 và y = mx + 4, với m là tham số.
a) Khi m = 3, tìm tọa độ các giao điểm của hai đồ thị hàm số trên.
b) Chứng minh rằng với mọi giá trị m, đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A1(x1,y1); A2 (x1 ,y2). Tìm tất cả các giá trị của m sao cho (y1)2 + (y2)2 = 72.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) Phương trình hoành độ giao điểm
\[{{\rm{x}}^2} = mx + 4\]
\( \Rightarrow {x^2} - mx - 4 = 0\)
Thay : m = 3
\( \Rightarrow {x^2} - 3x - 4 = 0\)
\( \Rightarrow \left( {x - 4} \right)\left( {x + 1} \right) = 0\)
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 4}\\{x = - 1}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{y = 16}\\{y = 1}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{A\left( {4;16} \right)}\\{B\left( { - 1;1} \right)}\end{array}} \right.\).
b) Ta có phương trình hoành độ giao điểm:
x2 – mx – 4 = 0.
Ta thấy ∆ = m2 + 16 > 0
Vậy phương trình luôn có hai nghiệm phân biệt x1 và x2.
Áp dụng định lí Vi – et, ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}{x_2} = - 4\end{array} \right.\)
Ta có: (y1)2 = \(x_1^4\); (y2)2 = \(x_2^4\)
\( \Rightarrow {\left( {{y_1}} \right)^2} + {\left( {{y_2}} \right)^2} = x_1^4 + x_2^4 = {\left( {x_1^2 + x_2^2} \right)^2} - 2x_1^2x_2^2\)
\( = {\left( {{x_1} + {x_2}} \right)^4} - 4{x_1}{x_2}{\left( {{x_1} + {x_2}} \right)^2} + 4x_1^2x_2^2 - 2x_1^2x_2^2\)
\( = {\left( {{x_1} + {x_2}} \right)^4} - 4{x_1}{x_2}{\left( {{x_1} + {x_2}} \right)^2} + 2x_1^2x_2^2\)
= m4 – 4.( – 4).m2 + 2(– 4)2
= m4 + 16m2 + 32
Suy ra m4 + 16m2 + 32 = 7
⇔ m4 + 16m2 + 25 = 0 (vô nghiệm).
Vậy không tồn tại m thỏa mãn điều kiện.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 5:
Cho nửa đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M tùy ý tia AM cắt d tại N. Gọi C là trung điểm của AM tia CO cắt d tại D.
a ) CMR OBNC nội tiếp.
b ) CMR NO vuông góc với AD.
c ) CMR CA . CN = CO . CD
d ) Xác định vị trí điểm M để (2AM + AN ) đạt GTNN.
Câu 6:
Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD
a) Các tứ giác AEFD, AECF là hình gì? Vì sao?
b) Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận