Cho hàm số y = x2 và y = mx + 4, với m là tham số.
a) Khi m = 3, tìm tọa độ các giao điểm của hai đồ thị hàm số trên.
b) Chứng minh rằng với mọi giá trị m, đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A1(x1,y1); A2 (x1 ,y2). Tìm tất cả các giá trị của m sao cho (y1)2 + (y2)2 = 72.
Cho hàm số y = x2 và y = mx + 4, với m là tham số.
a) Khi m = 3, tìm tọa độ các giao điểm của hai đồ thị hàm số trên.
b) Chứng minh rằng với mọi giá trị m, đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A1(x1,y1); A2 (x1 ,y2). Tìm tất cả các giá trị của m sao cho (y1)2 + (y2)2 = 72.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) Phương trình hoành độ giao điểm
\[{{\rm{x}}^2} = mx + 4\]
\( \Rightarrow {x^2} - mx - 4 = 0\)
Thay : m = 3
\( \Rightarrow {x^2} - 3x - 4 = 0\)
\( \Rightarrow \left( {x - 4} \right)\left( {x + 1} \right) = 0\)
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 4}\\{x = - 1}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{y = 16}\\{y = 1}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{A\left( {4;16} \right)}\\{B\left( { - 1;1} \right)}\end{array}} \right.\).
b) Ta có phương trình hoành độ giao điểm:
x2 – mx – 4 = 0.
Ta thấy ∆ = m2 + 16 > 0
Vậy phương trình luôn có hai nghiệm phân biệt x1 và x2.
Áp dụng định lí Vi – et, ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}{x_2} = - 4\end{array} \right.\)
Ta có: (y1)2 = \(x_1^4\); (y2)2 = \(x_2^4\)
\( \Rightarrow {\left( {{y_1}} \right)^2} + {\left( {{y_2}} \right)^2} = x_1^4 + x_2^4 = {\left( {x_1^2 + x_2^2} \right)^2} - 2x_1^2x_2^2\)
\( = {\left( {{x_1} + {x_2}} \right)^4} - 4{x_1}{x_2}{\left( {{x_1} + {x_2}} \right)^2} + 4x_1^2x_2^2 - 2x_1^2x_2^2\)
\( = {\left( {{x_1} + {x_2}} \right)^4} - 4{x_1}{x_2}{\left( {{x_1} + {x_2}} \right)^2} + 2x_1^2x_2^2\)
= m4 – 4.( – 4).m2 + 2(– 4)2
= m4 + 16m2 + 32
Suy ra m4 + 16m2 + 32 = 7
⇔ m4 + 16m2 + 25 = 0 (vô nghiệm).
Vậy không tồn tại m thỏa mãn điều kiện.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
O là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 0 = 0
1 là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 1 = 1
Lời giải
Hai góc tương ứng là hai góc của hai tam giác khác nhau.
Hai góc đó bằng nhau và nằm trong hai tam giác bằng nhau.
Câu 3
A. \[{\rm{3}}\overrightarrow {{\rm{IM}}} {\rm{ + 4}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]
B. \[\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + 4}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]
C. \[{\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]
D. \[{\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + }}\overrightarrow {{\rm{IN}}} {\rm{ + 3}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.