Từ một điểm A nằm bên ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn. Đường thẳng vuông góc với OB tại O cắt tia AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
1. Xác định hình tính của tứ giác AMON.
2. Điểm A phải cách O một khoảng là bao nhiêu để MN là tiếp tuyến của (O)?
Từ một điểm A nằm bên ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn. Đường thẳng vuông góc với OB tại O cắt tia AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
1. Xác định hình tính của tứ giác AMON.
2. Điểm A phải cách O một khoảng là bao nhiêu để MN là tiếp tuyến của (O)?
Quảng cáo
Trả lời:

1. Xét tứ giác AMON ta có
\(\left\{ {\begin{array}{*{20}{c}}{AM//ON({\rm{cung}}{\rm{.}}vuong.goc.voi.OB)}\\{AN//OM({\rm{cung}}{\rm{.}}vuong.goc.voi.OC)}\end{array}} \right.\)
Do đó AMON là hình bình hành
Mặt khác, xét hai tam giác vuông
\(\Delta OBM\)và \(\Delta OBM\)ta có
\(\left\{ {\begin{array}{*{20}{c}}{OB = OC = R}\\{\widehat {MOB} = \widehat {NOC}\left( {cung.phu.voi.goc.\widehat {MON}} \right)}\end{array}} \right.\)
Do đó \(\Delta OBM = \Delta OCN \Rightarrow OM = ON\)
Vậy AMON là hình thoi
2. Để MN tiếp xúc với (O; R) thì \(d\left( {O;MN} \right) = R \Leftrightarrow OI = R \Leftrightarrow OA = 2R\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

I là trung điểm của \[{\rm{MK}} \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\overrightarrow {{\rm{IK}}} {\rm{ = \vec 0}}\]
\[{\rm{NK = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{NP}} \Rightarrow \overrightarrow {{\rm{NK}}} {\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} \]
\[\overrightarrow {{\rm{IK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{NK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NI}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} \]
\[ \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]
\[ \Rightarrow {\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]
Chọn C
Lời giải
O là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 0 = 0
1 là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 1 = 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.