Câu hỏi:
12/07/2024 691Chứng minh rằng: nếu 1 tam giác có 2 đường trung tuyến vuông góc với nhau thì tổng các bình phương của 2 đường trung tuyến này bằng bình phương của đường trung tuyến thứ ba.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giả sử \[{\rm{\Delta }}ABC\] có hai đường trung tuyến BE và CF vuông góc với nhau, AD là đường trung tuyến thứ ba. Ta cần chứng minh \(A{D^2} = B{E^2} + C{F^2}\)
Trên tia đối của tia EF lấy điểm K sao cho EF = FK
Tứ giác AKCF có hai đường chéo cắt nhau tại trung điểm E của mỗi đường nên AKCF là hình bình hành → AK // FC. Mà \[FC \bot BE\] nên \(BE \bot AK\)(*)
Ta có: F là trung điểm của AB, E là trung điểm của AC nên EF là đường trung bình của \[{\rm{\Delta }}ABC\] \[ \to {\rm{ }}EF{\rm{ }} = \;{\rm{ }}\frac{1}{2}BC\]và EF // BC hay EK // BD (1)
Mà \[BD{\rm{ }} = {\rm{ }}\frac{1}{2}BC\](gt) nên EF = BD → EK = BD (do EF = EK theo cách chọn điểm phụ) (2)
Từ (1) và (2) suy ra EKDB là hình bình hành → EB // DK (**)
Từ (*) và (**) suy ra \[DK \bot AK\]→ \[{\rm{\Delta }}AKD\] vuông tại K \( \to A{K^2} + K{D^2} = A{D^2}\)(theo định lý Py-ta-go)
Mà AK = FC (do AKCF là hình bình hành) và KD = BE (do EKDB là hình bình hành) nên \(A{D^2} = B{E^2} + C{F^2}\) (đpcm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho nửa đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M tùy ý tia AM cắt d tại N. Gọi C là trung điểm của AM tia CO cắt d tại D.
a ) CMR OBNC nội tiếp.
b ) CMR NO vuông góc với AD.
c ) CMR CA . CN = CO . CD
d ) Xác định vị trí điểm M để (2AM + AN ) đạt GTNN.
Câu 7:
Cho hàm số y = x2 và y = mx + 4, với m là tham số.
a) Khi m = 3, tìm tọa độ các giao điểm của hai đồ thị hàm số trên.
b) Chứng minh rằng với mọi giá trị m, đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A1(x1,y1); A2 (x1 ,y2). Tìm tất cả các giá trị của m sao cho (y1)2 + (y2)2 = 72.
về câu hỏi!