Câu hỏi:

19/08/2025 287 Lưu

Tính giá trị nhỏ nhất của \(A = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\)với a, b, c > 0 và \(a + b + c = 3abc\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ điều kiện \(a + b + c = 3abc \Rightarrow A = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{{ab + bc + ac}}{{abc}} = \frac{{3\left( {ab + bc + ac} \right)}}{{a + b + c}}\) (1)

Theo hệ quả của BĐT AM-GM

\(\begin{array}{l}{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} \ge abc\left( {a + b + c} \right)\\ \Leftrightarrow {\left( {ab + bc + ac} \right)^2} \ge 3abc\left( {a + b + c} \right) = {\left( {a + b + c} \right)^2}\\ \Leftrightarrow ab + bc + ac \ge a + b + c\left( 2 \right)\end{array}\)

Từ (1) và (2)\( \Rightarrow A \ge 3\)

Do đó \({A_{\min }} = 3 \Leftrightarrow a = b = c = 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

O là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 0 = 0

1 là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 1 = 1

Lời giải

Hai góc tương ứng là hai góc của hai tam giác khác nhau.

Hai góc đó bằng nhau và nằm trong hai tam giác bằng nhau.

Câu 3

A. \[{\rm{3}}\overrightarrow {{\rm{IM}}} {\rm{ + 4}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]

B. \[\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + 4}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]

C. \[{\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]

D. \[{\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + }}\overrightarrow {{\rm{IN}}} {\rm{ + 3}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP