Câu hỏi:

27/02/2023 2,867 Lưu

Có 6 học sinh nam và 2 học sinh nữ được xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp sao cho hai học sinh nữ không đứng cạnh nhau?

A. 30240

B. 30420

C. 34020

D. 32400

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trường hợp 1: ta xếp 8 học sinh đứng tùy ý thành hàng ngang, có 8!(cách xếp).

Trường hợp 2: ta xếp 8 học sinh sao cho 2 nữ đứng cạnh nhau, coi 2 nữ là 1 nhóm.

+)  Xếp 6 nam và nhóm nữ, có 7! (cách xếp)

+) Xếp 2 nữ trong nhóm: có 2! (cách xếp)

Vậy có 7!.2! (cách xếp).

Số cách xếp sao cho hai học sinh nữ không đứng cạnh nhau: \[8!\; - 7!2! = 30240\] (cách xếp)

Chọn A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

O là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 0 = 0

1 là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 1 = 1

Câu 2

A. \[{\rm{3}}\overrightarrow {{\rm{IM}}} {\rm{ + 4}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]

B. \[\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + 4}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]

C. \[{\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]

D. \[{\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + }}\overrightarrow {{\rm{IN}}} {\rm{ + 3}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]

Lời giải

Cho tam giác MNP, gọi K là điểm thuộc đoạn thẳng NP sao cho NK = 1/4 NP và I là trung điểm (ảnh 1)

I là trung điểm của \[{\rm{MK}} \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\overrightarrow {{\rm{IK}}} {\rm{ = \vec 0}}\]

\[{\rm{NK = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{NP}} \Rightarrow \overrightarrow {{\rm{NK}}} {\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} \]

\[\overrightarrow {{\rm{IK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{NK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NI}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} \]

\[ \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]

\[ \Rightarrow {\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]

Chọn C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP