Câu hỏi:
27/02/2023 253
Cho tứ giác ABCD biết số đo của các góc \[\widehat A;\;\widehat B;\widehat C;\widehat D\] tỉ lệ thuận với 4 : 3 : 5 : 6. Khi đó số đo các góc\[\widehat A;\;\widehat B;\widehat C;\widehat D\] lần lượt là:
Cho tứ giác ABCD biết số đo của các góc \[\widehat A;\;\widehat B;\widehat C;\widehat D\] tỉ lệ thuận với 4 : 3 : 5 : 6. Khi đó số đo các góc\[\widehat A;\;\widehat B;\widehat C;\widehat D\] lần lượt là:
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án cần chọn là: A
Vì số đo của các góc \[\widehat A;\;\widehat B;\widehat C;\widehat D\] tỉ lệ thuận với 4; 3; 5; 6 nên ta có:
\[\frac{A}{4} = \frac{B}{3} = \frac{C}{5} = \frac{D}{6} = \frac{{A + B + C + D}}{{4 + 3 + 5 + 6}} = \frac{{A + B + C + D}}{{18}}\]
( tính chất dãy tỉ số bằng nhau )
Mà \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] nên ta có
\[\frac{A}{4} = \frac{B}{3} = \frac{C}{5} = \frac{D}{6} = \frac{{A + B + C + D}}{{18}} = \frac{{{{360}^0}}}{{18}} = {20^0}\]
\[ \Rightarrow \widehat A = 4 \times 20^\circ = 80^\circ \;;\;\widehat B = 3 \times 20^\circ = 60^\circ ;\,\,\widehat C = 5 \times 20^\circ = 100^\circ \;;\,\,\widehat D = 6 \times 20^\circ = 120^\circ \]
Nên số đo các góc\[\widehat A;\;\widehat B;\widehat C;\widehat D\] lần lượt là\[80^\circ ;\;60^\circ ;\;100^\circ ;\;120^\circ \]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

I là trung điểm của \[{\rm{MK}} \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\overrightarrow {{\rm{IK}}} {\rm{ = \vec 0}}\]
\[{\rm{NK = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{NP}} \Rightarrow \overrightarrow {{\rm{NK}}} {\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} \]
\[\overrightarrow {{\rm{IK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{NK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NI}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} \]
\[ \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]
\[ \Rightarrow {\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]
Chọn C
Lời giải
O là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 0 = 0
1 là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 1 = 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.