Câu hỏi:
12/07/2024 1,688
Cho hình bình hành ABCD. Chứng minh rằng với mọi điểm M, ta có:\[\overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MB} + \overrightarrow {MD} \]
Cho hình bình hành ABCD. Chứng minh rằng với mọi điểm M, ta có:\[\overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MB} + \overrightarrow {MD} \]
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Do ABCD là hình bình hành nên \[\overrightarrow {AB} = \overrightarrow {DC} \]
\[\begin{array}{*{20}{l}}{ \Rightarrow \overrightarrow {AM} + \overrightarrow {MB} = \overrightarrow {DM} + \overrightarrow {MC} }\\{ \Leftrightarrow - \overrightarrow {MA} + \overrightarrow {MB} = - \overrightarrow {MD} + \overrightarrow {MC} }\\{ \Leftrightarrow \overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MB} + \overrightarrow {MD} }\end{array}\]
Cách 2:
Ta có:
\[\overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MB} + \overrightarrow {MD} \Leftrightarrow \overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {MD} - \overrightarrow {MC} \]
Áp dụng quy tắc hiệu ta có:\[\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} ;\;\;\overrightarrow {MD} - \overrightarrow {MC} = \overrightarrow {CD} \]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

I là trung điểm của \[{\rm{MK}} \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\overrightarrow {{\rm{IK}}} {\rm{ = \vec 0}}\]
\[{\rm{NK = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{NP}} \Rightarrow \overrightarrow {{\rm{NK}}} {\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} \]
\[\overrightarrow {{\rm{IK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{NK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NI}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} \]
\[ \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]
\[ \Rightarrow {\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]
Chọn C
Lời giải
O là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 0 = 0
1 là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 1 = 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.