Cho hình bình hành ABCD có tâm O. M là một điểm bất kì trong mặt phảng.CMR:
a) \[\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{ OD}}} {\rm{ + }}\overrightarrow {{\rm{OC}}} = \overrightarrow {AC} \]
b) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} = \overrightarrow {OD} \]
c) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{ OB}}} = \overrightarrow {MO} - \overrightarrow {MB} \]
Cho hình bình hành ABCD có tâm O. M là một điểm bất kì trong mặt phảng.CMR:
a) \[\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{ OD}}} {\rm{ + }}\overrightarrow {{\rm{OC}}} = \overrightarrow {AC} \]
b) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} = \overrightarrow {OD} \]
c) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{ OB}}} = \overrightarrow {MO} - \overrightarrow {MB} \]
Quảng cáo
Trả lời:
a) \[\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{ OD}}} {\rm{ + }}\overrightarrow {{\rm{OC}}} \]
\[{\rm{ = }}\overrightarrow {{\rm{AB}}} {\rm{ + (}}\overrightarrow {{\rm{OC}}} {\rm{ - }}\overrightarrow {{\rm{OB}}} {\rm{)}}\](quy tắc trừ hai vec tơ)
\[{\rm{ = }}\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ = }}\overrightarrow {{\rm{AC}}} \]
b) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} \] (quy tắc hình bình hành)
\[{\rm{ = }}\overrightarrow {{\rm{BD}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} {\rm{ = }}\overrightarrow {{\rm{OD}}} \]
c) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{ OB}}} \]
\[{\rm{ = }}\overrightarrow {{\rm{BD}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} {\rm{ = }}\overrightarrow {{\rm{OD}}} {\rm{ = }}\overrightarrow {{\rm{BO}}} {\rm{ = }}\overrightarrow {{\rm{MO}}} {\rm{ - }}\overrightarrow {{\rm{MB}}} \]

Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
O là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 0 = 0
1 là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 1 = 1
Lời giải
Hai góc tương ứng là hai góc của hai tam giác khác nhau.
Hai góc đó bằng nhau và nằm trong hai tam giác bằng nhau.
Câu 3
A. \[{\rm{3}}\overrightarrow {{\rm{IM}}} {\rm{ + 4}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]
B. \[\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + 4}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]
C. \[{\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]
D. \[{\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + }}\overrightarrow {{\rm{IN}}} {\rm{ + 3}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {\rm{0}} \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.