Câu hỏi:
12/07/2024 3,800Cho tứ giác ABCD chứng minh
a) AB < BC + CD + AD
b) AC + BD < AB + BC + CD + AD
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
a) Nối A với C. Xét \(\Delta ABC\)có :
AB < BC + AC (qh giữa các cạnh trong tam giác) (1)
Xét \(\Delta ADC\)có:
AC < AD + DC (qh giữa các cạnh trong tam giác) (2)
Cộng vế 1 và 2 vào ta sẽ có:
AB + AC < BC + AC + AD + CD
→ AB + BC < CD + AD
→ AB < CD + AD + BC
b) Xét \(\Delta ABC\), ta có: AC < AB + BC
Xét \(\Delta ADC\), ta có: AC < AD + DC
→ 2AC < AB + BC + AD + DC
nên \[AC{\rm{ }} < {\rm{ }}\frac{{\left( {{\rm{ }}AB{\rm{ }} + {\rm{ }}BC{\rm{ }} + {\rm{ }}CD{\rm{ }} + \,AD} \right)}}{2}\](1)
Tương tự như vậy \[BD < \frac{{\left( {AB + BC + CD + AD} \right)}}{2}\](2)
Từ 1 và 2 suy ra AC + BD < AB + BC + DC + AD
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 5:
Cho nửa đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M tùy ý tia AM cắt d tại N. Gọi C là trung điểm của AM tia CO cắt d tại D.
a ) CMR OBNC nội tiếp.
b ) CMR NO vuông góc với AD.
c ) CMR CA . CN = CO . CD
d ) Xác định vị trí điểm M để (2AM + AN ) đạt GTNN.
Câu 6:
Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD
a) Các tứ giác AEFD, AECF là hình gì? Vì sao?
b) Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận